SG-003A

OPERATING MANUAL

 Multi-functional Signal Generator
SG-003A

T:00:09:30	
Current Input:	Range:
00:00:00	mA

CATALOG

1, Safety Instructions >>) 01
2, Product Description 1)
2.1 Specifications 01
2.3 Interface Terminal 02
2.4 Power \& Charge 03
3, Button Panel Introduction 1) 03
4. Display \& Signal Description >)>
4.1 Switching Of Signal Types 05 4.2 mA Current Signal 05
4.3 V Voltage Signal 05
4.4 XMT Passive Current Signal 06
4.5 Hz Pulse Signal 06
4.6 24V Loop Detection 07
5, Extensions >>>
5.1 Engineering 07
5.2 Preset Value 08
5.3 Signal Conversion 08
5.4 Program Output 08
5.5 Real-time Curve 09
5.6 Output Time 10
5.7 Communication 10
6, Wiring Instructions ") 11
7, Fault Resolution \& Equipment Maintenance >)
7.1 Fault Resolution 12
7.2 Equipment Maintenance 12
7.3 Firmware Upgrade 12
8, Production information 13

1．SAFETY INSTRUCTIONS

－Plug the meter into the PC，and turn it on．Wait for the PC to recognize the USB drive named＂Bootloader＂
－Dont use the instrument in a flammable and explosive environment
－Used batteries for instrument replacement and discarded instruments cannot be disposed of with household waste．Please handle in accordance with relevant national or local laws and regulations
－When there is any quality problem with the instrument or when there is a question about using the instrument．You can contact＂Finiris＂online customer service or the manufacturer，we will solve it for you in the first time

2，PRODUCT DESCRIPTION

【2．1】 Specifications

Signal	Range	Precision	Resolution	Max load	External power supply
Active current （mA）output	$0 \sim 24 \mathrm{~mA}$	$\pm(0.1 \%+0.005)$	0.01 mA	750Ω	
Passive current （XMT）output	$0 \sim 24 \mathrm{~mA}$	$\pm(0.1 \%+0.005)$	0.01 mA		$0 \sim 30 \mathrm{~V}$
Voltage（V） output	$0 \sim 24 \mathrm{~V}$	$\pm(0.1 \%+0.005)$	0.01 V		
24V loop	$0 \sim 24 \mathrm{~mA}$	$\pm(0.1 \%+0.005)$	0.01 mA		
Frequency (Hz) output	$0 \sim 9999 \mathrm{~Hz}$	$\pm 2 \%$	5 digits		
Current (mA) input	$0 \sim 24 \mathrm{~mA}$	$\pm(0.1 \%+0.005)$	0.01 mA		
Voltage (V) input	$0 \sim 30 \mathrm{~V}$	$\pm(0.1 \%+0.005)$	0.01 V		

【2．2】 Function Introduction

－【Conversion Of Engineering Quantity Display 】：Signals are displayed as physical or engineering（ie pure quantity）values，The physical quantity corresponds linearly with the engineering quantity．For example：the current signal of 4～20mA corresponds to $0 \sim 100$ ，that is， 4 mA corresponds to $0,12 \mathrm{~mA}$ corresponds to 50 ，and 20 mA corresponds to 100 ．This range can be modified by parameters
－【 Preset Value 】： 4 groups of commonly used signal values can be preset to facilitate quick adjustment of output
－【 Signal Conversion 】：The input signal is converted into an output signal，which can be converted between different physical quantities；for example：the input frequency signal is converted into a current signal，and the input range is $0-1000 \mathrm{hz}$ into $4-20 \mathrm{~mA}$
－【 Programming Output 】：It has the output function of automatically and continuously changing the size according to the setting parameters，and can choose three modes：monotonous rise，monotonous fall and cycle
－【 Real－time Curve 】：The change trend of input and output signals can be displayed by drawing a curve，and the sampling time of the curve can be set．It can also automatically adjust the display curve within the range of the maximum and minimum values within a certain period of time
－【 Modbus Slave 】：FNIRSI SG－003A can communicate with configuration software or PLC via RS485，set the instrument
－【Firmware Upgrade 】：USB emulated U disk for firmware upgrade

【2．3】 Interface Terminal

【Interface】
－There are 4 inner diameter 4 mm wiring ports on the top surface，which are represented by different color rings
－The blue port（IN－）is an alternate function，and it is also an input－，which can be switched to a 24 V independent test power supply．The（IN－）port is internally shorted with the black（COM）port in the input state．When the（IN－）port is an independent power supply，there is a 24 V voltage between the（COM）port
－Red（OUT）port and black（COM）port form an output port
－Yellow（IN＋）and blue（IN－）form the input port
－When the（IN－）port is an independent power supply，it can be called a（24V）port， and it forms an output port pair with the（COM）port

【2．4】 Power \＆Charge

【 Bottom Display 】

－Built－in battery： 3000 mA large capacity lithium battery
－Battery display：Displays the current battery level in the upper right corner of the display
－Charging port：Type－C port（DC 5V）
－State of charge：When charging，the power button will display a red light．When fully charged，it will automatically stop charging and display a blue light

3，BUTTON PANEL INTRODUCTION

－All buttons are made of white translucent silicone material．The color LED backlight is set under the Button，which can make the key surface change color with the change of function and mode．Give more intuitive status indication
－The keys are mainly divided into【3－Key area】 and 【5－Key area】，and each key has multiple functions．Among them，the【FN】Button and the【5－Key area】 key have the up／down function and the function marked on the key，which will be changed according to the state of the【FN】 key and the interface mode．Start－up defaults to the upshift function

- 【 FN】 key state is divided into：default white light state and red light state
- 【5－Key area】The status is divided into：Button white light（Manual setting mode）；Button green light（Preset output mode）；Button blue light（Programming mode）；No button light（Conversion mode）
－Button Function Operation Description：
（1【RUN】 Light：The power on／on output is white light
2【IN】Input key：Used to switch the input signal mode in the main interface；When【FN】 red light is on，click【IN】 to enter the input setting
（3【OUT】Output key：used to switch the output signal mode on the main interface．When the【FN】 red light is on，click【FN】 to enter the output setting
4【FN】Exit Return key：In the main interface，click【FN】，it will turn into a red light to activate the downshift function of other keys（enter different modes， etc．）．In the setting interface，the function of 【FN】 is to return

（5）Main Interface】：Main display interface
6 【PRESET】Upfunction key：When the key is white，it is to add value or select upward （when the output pulse is quantitative and the cursor is not in，it is the same as the programming mode）．When the【FN】 red light is on（the button is green），click【PRESET】 to enter／exit the preset output mode．At this time，the up，down，left and right buttons can quickly recall the preset signal value
（7）【AUTO】Left function key：when the key is white，it is to select to the left（when the output pulse is quantitative and the cursor is not present，it is the same as the programming mode）．When the【FN】 red light，click【AUTO】 to enter／exit the programming mode（the button blue light），at this time，the up key－single output，the down key－reset，the left key－end the output，the right key－pause／ continue
8 【ON／OFF】 Confirmation button：when the main interface（Turn on／off the output）；when setting the interface（Click for＂OK＂）
9【CURVE】Right function key：When the key is white light（select to the right～ when the output pulse is quantitative and the cursor is not in，it is the same as the programming mode）．When 【FN】 is red light（click to switch curve interface／character interface）
$10 【$ CONVERT】 Down function key：When the key is white，it is to decrement the value or select down（when the output pulse is quantitative and the cursor is not in，it is the same as the programming mode；When 【FN】 is red light（click to enter／exit the conversion mode）

4，DISPLAY \＆SIGNAL DESCRIPTION

【Input Signal Settings】

T：00：09：30							
OUT \＄	mA	V	XMT	Hz	24 V		
Basic	Mode： O．Actual © Range			Out Range：			
Range				$0-24 \mathrm{~mA}$			
Program	Loop－Vol：			0． 20 mA 0－10mA USER			
Preset				（c） 12 V			
Calibra．	（ ） 24 V						

【Output Signal Settings 】

【4．1】 Switching Of Signal Types

－Press【FN】 on the main interface．After the【FN】button turns red，if you want to switch the input signal type，press the【IN】 button to enter the input setting
－If you want to switch the output signal type，press【OUT】 key to enter the output setting．After entering the setting interface，you can directly select the desired signal type from left to right．Press【FN】 to exit to the main interface
－There are also a variety of signal modes available for switching under various signal types．Various signal types also have different parameters that can be set

【4．2】 mA Current Signal

－【Mode Switch】：When the main interface【FN】 is white，press【IN／OUT】 to switch the display of input／output actual value and engineering quantity
－【 Output Open Circuit Detection】：When the output is turned on，if the interface displays open circuit and flashes，it means that the output signal is not connected or the output is close to zero
－【Output Circuit Voltage 】：FNIRSI SG－003A can set current output no－load voltage．The purpose of 12 V is to save power．Some devices require a 24 V drive capability
－【 Output Range】：The limit range of the current output can be set

【4．3】 V Voltage Signal

－【 Mode Switch】：When the main interface【FN】 is white．Press【IN／OUT】 to switch the display of actual value and engineering quantity of input／output
－【Overcurrent Protection】：If the output voltage is shorted，the output will automatically shut down
－【 Output Range】：The limit range of the voltage output can be set PAGE 05

［4．4］XMT Passive Current Signal

－【 Mode Switch】：When the main interface【FN】 is white．Press【IN／OUT】 to switch the display of actual value and engineering quantity of input／output
－【 Output Range 】：The limit range of passive current output can be set

【4．5】 Hz Pulse Signal

－【 Mode 】：The pulse signal has four modes：frequency，PWM duty cycle，speed frequency， pulse quantitative／counting．When the main interface【FN】 is white，long press【OUT】 to switch mode
－【 Range 】：Select the range of frequency output： $0 \sim 99.999 \mathrm{~Hz}, 0 \sim 999.99 \mathrm{~Hz}$ ， 0～9999Hz，0～200kHz

- 【Method】：Select level／open circuit according to the presence or absence of pull－up
- 【 Output Peak Value】：The level height of the output waveform，the highest is 24 V
- 【 Frequency Mode Operation Instructions】：The frequency range can be switched by pressing【OUT】 when the main interface【FN】 is white
－【Operating Instructions In PWM Mode 】：PWM displays two parameters，the frequency value（that is，the period value）and the duty cycle．The frequency value will be displayed in the original engineering quantity position（no engineering quantity display）．Note that the maximum frequency does not exceed 9999 Hz ．The frequency value／duty cycle parameters can be set when outputting．When the main interface【FN】 is white，press【OUT】 to switch，there is a yellow cursor indication
－【Operating Instructions For Speed Mode】：
（1）The speed mode is used to calculate the speed of the motor or gear．One revolution of the motor or gear produces 1 pulse，one minute is 3000 revolutions，so 1 second is 50 pulses
（2）【Time Unit 】：Frequency＝RPS（per second）＊number of pulses per revolution， RPM（per minute）$=$ RPS＊ 60 ，RPH（per hour）$=$ RPS $* 3600$ ．In the speed setting selection， note that the maximum frequency does not exceed 9999 Hz
（3）【 Number Of Revolution Pulses 】：The number of pulses per revolution of the motor or gear，which can be selected in the speed setting
（4）【 Tooth Missing 】：It is mainly used to simulate the engine speed，select it in the speed setting
－【Quantitative／Counting Mode Operation Instructions 】：The main purpose of pulse quantitative is to simulate the quantitative control sensor of flow．the frequency value will be displayed in the original quantity position．The cycle is displayed at the original engineering position，and the unit is milliseconds．When the main interface【FN】 is white，press【OUT】 to switch between cycle and quantitative values，which are distinguished by cursors
The period value can be modified during quantitative output．In this mode，when the cursor disappears after the output is turned on，the backlight of the up，down， left，and right keys will turn blue．The function of the up，down，left，and right buttons will also change，that is，the up is a single pulse sent．Down is program stop and reset，left is no function，right is start／pause

【4．6】 24 V Loop Detection

－Select the 24 V label left and right in the OUT signal type interface to enter this function state．In this state，displays the output 24 V loop current on the main interface．Unlimited input signal detection type
（1）Loop 1：After starting the output， 24 V voltage is output between the（OUT）port and（COM）port，and the loop current is detected at the same time，and the current is displayed in the＂output 24 V loop＂area．This function can be used to test，for example，pneumatic control valves or two－wire transmitters，supply them with 24 V power supply and detect current
（2）Loop 2：After activating the independent 24 V power supply．The（IN－）port outputs 24 V voltage between the（ 24 V ）port and the（COM）port．It does not affect the detection type of the input signal by the（ $\mathrm{IN}+$ ）port．In this case，select mA for the input signal type．Then the（ $\mathrm{IN}-$ ）port can be combined with the（ $\mathrm{IN}+$ ）port to form a 24 V output，And at the same time detect the current loop．The function is similar to the circuit one
（3）Port（IN－）can be switched to independent 24 V power supply function．It outputs a single DC24V voltage，which is the（ 24 V ）port at this time．$(24 \mathrm{~V})$ port used with （IN＋）to test two－wire transmitters
（1The difference between 24 V loop detection and standalone 24 V is：24V
loop detection output signal port to measure feedback current．
（2）Independent 24 V port and output port can form 24 V power supply，It
can also be combined with the input（ + ）to form a transmitter to supply
power and measure the feedback current of the transmitter
－【Mode switch】：When the main interface【FN】 is white．Press【OUT】 to switch the display position of output actual loop current value and engineering quantity【Activate independent $\mathbf{2 4 V}$ 】：After this item is checked，the independent 24 V power supply starts to output from the（24V）port（IN－）port and the（COM）port，and is not affected by input and output signal type switching
－【Activate Hold 】：After this item is checked，each time the machine is turned on， the 24 V state will remain in the state of the last turn－on．Otherwise，every time you turn on the 24 V ，you need to turn it on manually

5，EXTENSIONS

【5．1】 Engineering

－When the signal value of analog quantity is used in the industrial field，it is generally necessary to convert it into engineering quantity value．Therefore，in the input and output settings of each signal，the instrument can set the upper and lower limits of its engineering quantity and the upper and lower limits correspond－ ing to the signal value

［5．2】 Preset Value

－【 Parameter Setting 】：You can set the signal value corresponding to the up，down， left and right buttons
－【 Operation Instructions】：Start and Exit：When the main interface【FN】 is red， press the up key【PRESET】 to Start／Exit the preset
－【Up，Down，Left And Right Keys 】 ：After starting the preset，the backlight of the up，down，left and right keys will turn green，and the key function will also change to＂output the set value＂

【5．3】 Signal Conversion

－The input signal is converted into an output signal．For example：the input frequency signal is converted into a current signal，and the input range is $0-1000 \mathrm{hz}$ and converted into $4-20 \mathrm{~mA}$
－【Parameter Settings 】：
（1）Input upper limit／input lower limit：the amplitude range of the input signal
（2）Output upper limit／output lower limit：the amplitude range of the output signal
（3）Overrun allowed：For example，1－5V is converted into 4－20ma．If the user checks this option，when the input is oV，the output will follow to OmA．If the user does not check it，then the output is 4 mA and the output is locked within the set range （4）Automatic operation：After checking this option，the signal conversion will be automatically started at the next power－on，and the signal conversion will be automatically canceled when the signal conversion is exited

－【Instructions】：

【Start and Exit 】：When the main interface【FN】 is red，press the key【CONVERT】 to start／exit the signal conversion mode．After startup，the backlight of the up， down，left and right keys will turn off and have no function

【5．4】 Program Output

－The programming output can automatically complete N cycles of signal output according to the parameters set by the user．This function is mainly used for the aging test of electric valve or pneumatic valve，Or test work such as PLC program debugging

－【Parameter Settings 】：

（1）Mode：It is divided into three modes：single rise，single fall and cycle
（2）Number of loops： 0 is infinite， 30000 is the maximum
（3）Start value：The value at each start
（4）End value：The value at the end of each
（5）Increment step value：The value of each increment
（6）Increment step time：The time between each increment
（7）End stop：The time delay at the end value
（8）Decrement step value：The value to decrease each time
（9）Decrease step time：The time between each decrease
（10）Loop stop：Time delay at start value
－【Supplementary Parameter Description】：
The start value and end value of single rise and single fall are selected according to high and low，and does not automatically close
－【Instructions】：
（1）Start and Exit：When the main interface【FN】 is red，press the left key【AUTO】 to start／exit the programming output mode
（2）Up，Down，Left and Right keys：After starting the programming output mode，the backlight of the up，down，left and right keys will turn blue．The functions of the up， down，left and right buttons will also change，that is，the top is a single run，the bottom is a program reset，the left is a single－step run，and the right is a Stop／Continue

【5．5】 Real－time Curve

－【Instructions】：

When the main interface【FN】 is red，press the right button【CURVE】 to switch the interface with／without curve

－【Parameter Description】：

（1）Turn on the output curve：turn on the following display curve of the output signal（Red line）
（2）Automatic output scaling：automatically adjust the scale range of the output signal，and automatically adjust the scale range of the y－axis with the maximum and minimum values of the curve
（3）Input automatic scaling：automatically adjust the scale range of the input signal， and automatically adjust the scale range of the y－axis according to the maximum and minimum values of the curve．
（4）Acquisition time：the refresh interval of the curve，and the time scale will also change with it

【5．6】 Output Time

－【 Output Activation Output Time 】：When checked，each output will automatically turn off the output after the output time expires
－【Output Time】：Set output time

【5．7】Communication

－【USB connection 】：Because the USB analog serial port is used for communica－ tion．Note that charging will slow down after checking the USB connection
－【 Slave address 】：MODBUS slave address．（Please refer to the attached table 1，2， 3 on page 14 for the address and description of the instrument register）

PLC／Process instrument，etc．

【All Switched by Electronic Switches】
【All－round Signal Output】：
Current／Voltage／Frequency

PLC／Process
 instrument，etc．

【All Switched by Electronic Switches】
【All－round Signal Output】：
Current／Voltage／Frequency

Switch this input（－），the port to 24 V ， as the power supply for the valve feedback，the input and output are carried out at the same time

This input（－），the port is closed to 24 V ， as the negative pole of the input signal，the input and output are performed at the same time

7，FAULT RESOLUTION\＆EQUIPMENT MAINTENANCE

【7．1】 Fault Resolution

－No response when SG－003A is turned on：
（1）Determine if the battery has power and if the indicator light is normal when charging
（2）Firmware upgrade error operation leads to system crash
－Abnormal screen display：Check if the screen is connected properly．
－Abnormal output value or measured value：
（1）Check the signal line
（2）Check the interface for signal selection
（3）The target parameter of the connection exceeds the range indicated by the technical indicator？（It may cause the instrument to work abnormally or even damage）
－Error in input and output：It is normal that there may be errors in input and output．Because the input and output are not isolated

【7．2】 Equipment Maintenance

－The meter is powered by 3.7 V rechargeable lithium battery，please use the power adapter to extend battery life when using it for a long time
－This instrument is not waterproof，please do not use it in a high humidity environment
－Do not place the unit in a place that is unstable or may be subject to strong vibrations
－Do not place this unit in places with high humidity，dust，direct sunlight，outdoors， or near high temperatures

【7．3】 Firmware Upgrade

－SG－003A uses USB emulated U disk for firmware upgrade
－【Upgrade Steps】：
（1）Plug the meter into the PC，and turn it on．Wait for the PC to recognize the USB drive named＂Bootloader＂
（2）Copy the firmware to be upgraded to the U disk
（3）After a few seconds，the device is powered on normally and the upgrade is successful

8, PRODUCTION INFORMATION

Product name: Multi-functional Signal Generator
Brand / Model: FNIRSI / SG-003A
Manufacturer: Shenzhen FNIRSI Technology Co., Ltd.
Website: www.fnirsi.cn
Address: Building C, Weihuada Industrial Park, Dalang Street, Longhua District, Shenzhen, Guangdong, China

Function code	Hexadecimal	Type of Data	Attributes
100	0×64	uint16＿t	read
101	0×65	uint16＿t	write
102	0×66	float	read
103	0×67	float	write

【 Table 1】

Address	Hexadecimal	Type of Data	Attributes	Illustrate
40001	0x9C41	uint16＿t	read	Firmware version
40002	0x9C42	uint16＿t	RW	Input signal
40003	0X9C43	uint16＿t	RW	Output signal
40004	0x9C44	float	read	Input value
40006	0x9C46	float	RW	Output value
40008	0X9c48	uint16＿t	RW	Software output mode and output switch
40009	0X9C49	uint16＿t	RW	Active current output value USER upper limit
40010	0X9C4A	uint16＿t	RW	Active current output value USER lower limit
40011	0X9C4B	uint16＿t	RW	Voltage output value USER upper limit
40012	0X9C4C	uint16＿t	RW	Voltage output value USER lower limit
40013	0X9C4D	uint16＿t	RW	Passive current output value USER upper limit
40014	0X9C4E	uint16＿t	RW	Passive current output value USER lowerlimit

Table 2 1

	Enter
Register upper 8 bits	01 is current； 02 is voltage； 03 is frequency； 04 is millivolt； 05 is resistance
Register lower 8 bits	The upper four bits are the type： $1-8$ represent $\mathrm{S}, \mathrm{B}, \mathrm{E}, \mathrm{K}, \mathrm{R}, \mathrm{J}, \mathrm{T}, \mathrm{N}$ in turn Lowerfour－bit mode： 1 is $\mathrm{mV}, 2$ is thermocouple， 3 is WR thermocouple

【 Table 3】

【Example】Write input millivolt signal，J thermocouple type

01	65	9 C	42	04	62	40	AF
slave address	function code	register address	register address low byte	Register number high byte	Register number low byte	CRC high byte	CRC low byte

01：Slave address set by the device； 65 ：Write function code，see Table 1；9C42：Read and write input signal address，see Table 2；04：01 is current， 02 is voltage， 03 is frequency，and 04 is
Illustrate：millivolt， 05 is the resistor； 62 ：the upper four bits are the type： 1 is S， 2 is B， 3 is $E, 4$ is $K, 5$ is R， 6 is $\mathrm{J}, 7$ is $\mathrm{T}, 8$ is N ，the lower four bits mode： 1 is millivolt， 2 is thermocouple， 3 is WR thermocouple；40AF：CRC code（note！Send in hex）

Download Manuals and Firmware

Manufacturer: Shenzhen FNIRSI Technology Co., Ltd.
Website: www.fnirsi.cn
Address: Building C, Weihuada Industrial Park, Dalang Street,

