
Article
Gut-microbiota-targeted diets modulate human
immune status
Graphical abstract
Highlights
d Diet intervention with systems profiling reveals links in diet-

microbiome-immune axis

d High-fiber diet changes microbiome function and elicits

personalized immune responses

d Fermented-food diet increases microbiome diversity and

decreases markers of inflammation
Wastyk et al., 2021, Cell 184, 4137–4153
August 5, 2021 ª 2021 Elsevier Inc.
https://doi.org/10.1016/j.cell.2021.06.019
Authors

Hannah C. Wastyk,

Gabriela K. Fragiadakis,

Dalia Perelman, ..., Erica D. Sonnenburg,

Christopher D. Gardner,

Justin L. Sonnenburg

Correspondence
cgardner@stanford.edu (C.D.G.),
erica.sonnenburg@stanford.edu (E.D.S.),
jsonnenburg@stanford.edu (J.L.S.)

In brief

A prospective randomized multiomics

study in humans investigating the

longitudinal effects of a high-fiber or

fermented-food diet shows their

differential effects on the diversity of the

microbiome, with the latter having a

noticeable impact on reducing

inflammatory markers and modulating

immune responses.
ll

mailto:cgardner@stanford.edu
mailto:erica.sonnenburg@stanford.edu
mailto:jsonnenburg@stanford.edu
https://doi.org/10.1016/j.cell.2021.06.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2021.06.019&domain=pdf


ll
Article

Gut-microbiota-targeted diets
modulate human immune status
Hannah C. Wastyk,2,7 Gabriela K. Fragiadakis,1,7 Dalia Perelman,3 Dylan Dahan,1 Bryan D. Merrill,1 Feiqiao B. Yu,5

Madeline Topf,1 Carlos G. Gonzalez,4 William Van Treuren,1 Shuo Han,1 Jennifer L. Robinson,3 Joshua E. Elias,5

Erica D. Sonnenburg,1,6,* Christopher D. Gardner,3,* and Justin L. Sonnenburg1,6,8,*
1Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
2Department of Bioengineering, Stanford School of Medicine, Stanford, CA 94305, USA
3Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
4Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
5Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
6Center for Human Microbiome Studies, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
7These authors contributed equally
8Lead contact

*Correspondence: erica.sonnenburg@stanford.edu (E.D.S.), cgardner@stanford.edu (C.D.G.), jsonnenburg@stanford.edu (J.L.S.)
https://doi.org/10.1016/j.cell.2021.06.019
SUMMARY
Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how
two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human
microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/
arm) combinedwith -omicsmeasurements ofmicrobiome and host, including extensive immune profiling, we
found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohy-
drate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response
score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers
corresponded to baselinemicrobiota diversity. Alternatively, the high-fermented-food diet steadily increased
microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interven-
tions to deep and longitudinal immune and microbiome profiling can provide individualized and population-
wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and
increased inflammation pervasive in industrialized society.
INTRODUCTION

The importance of the gut microbiota, or microbiome, in human

health (Lynch and Pedersen, 2016) necessitates enhanced un-

derstanding of the factors that influence the composition and

function of this microbial community. Diet has emerged as a

driving factor in microbiota composition and function (Flint

et al., 2017; Muegge et al., 2011; Rothschild et al., 2018; Zherna-

kova et al., 2016). The profound link between diet and the micro-

biota in humans has been demonstrated in numerous ways, for

example, by coupling long-term dietary patterns and microbiota

diversity, taxonomic composition, andmicrobiome gene content

measurements (Smits et al., 2017; Jha et al., 2018; Yatsunenko

et al., 2012; Arumugam et al., 2011). Short-term changes in

diet during prospective dietary intervention studies have also

been shown to rapidly change the human gut microbiota (David

et al., 2014), although we and others have reported a general re-

silience of the humanmicrobiota over short time periods (days to

months) coupled with retention of highly individualized micro-

biome identities (Wu et al., 2011; Fragiadakis et al., 2020).
The integration of the gut microbiota into human biology sug-

gests that manipulation of gut microbes may be a powerful

means to alter diverse aspects of human health. Diets targeting

the gut microbiome to enhance, introduce, or eliminate specific

functionalities or taxa could prove a powerful avenue for realizing

the promises of precision medicine. Even in the absence of

manipulation, the gut microbiome contains features that are

informative when predicting individual-specific postprandial re-

sponses to specific foods (Zeevi et al., 2015; Brand-Miller and

Buyken, 2020). One key question is whether there are broad,

non-personalized dietary recommendations that can leverage

extant microbiota-host interactions for improved health across

populations.

Non-communicable chronic diseases (NCCDs) are largely

driven by chronic inflammation, and rates are increasing rapidly

with industrialization. Coincidentally, gut microbiota changes

with industrialization are also well documented. Rapid ‘‘western-

ization’’ of the microbiota has been observed in US immigrants,

with loss of microbial functions and taxa accompanied by dete-

riorating markers of host health, increased BMI, and rising
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inflammatory markers typical in industrialized populations (Van-

gay et al., 2018; Sonnenburg and Sonnenburg, 2019). A 2-week

food exchange study in which African Americans consumed a

rural African diet and rural Africans ate a typical African American

diet revealed measurable changes to the microbiota and

markers of cancer risk despite the brevity of the dietary interven-

tion (O’Keefe et al., 2015). Given that the human microbiome is

known to influence inflammatory status, a key question is

whether diets that target the gut microbiome can attenuate sys-

temic inflammation in healthy individuals.

A diverse body of literature supports the role of fiber in health,

including a dose-response relationship of higher fiber consump-

tion and lower rates of mortality (Liu et al., 2015). Mechanistic

studies in animal models reveal the role of microbiota-accessible

carbohydrates (MACs) present in dietary fiber in supporting gut

microbiota diversity and metabolism and the positive role of

short-chain fatty acids (SCFAs), a product of fiber fermentation

by the gut microbiota, in maintaining gut barrier health and

attenuating inflammation (reviewed in Makki et al., 2018 and

Sonnenburg and Sonnenburg, 2014). Dietary interventions that

specifically alter dietary fiber, such as increases in total carbohy-

drates, whole grains, and resistant starch versus wheat bran

consumption, have shown impacts on the microbiota along

with improvements in health markers of the study participants

(Duncan et al., 2007; Martı́nez et al., 2013; Walker et al., 2011).

These findings and the shortfall between fiber consumption in

the average American diet versus recommended levels suggest

that boosting fiber intake could be a powerful way to modulate

the human immune system via the microbiota (Deehan and Wal-

ter, 2016).

Fermented foods, such as kombucha, yogurt, and kimchi,

have gained popularity as reports of potential health benefits in

animal models and humans have emerged (Dimidi et al., 2019;

Villarreal-Soto et al., 2020). Large cohort studies as well as

limited interventional studies have linked the consumption of fer-

mented foods with weight maintenance and decreased dia-

betes, cancer, and cardiovascular disease risks (Mozaffarian

et al., 2011; Dı́az-López et al., 2016; Gille et al., 2018). A recent

longitudinal study of a subset of American Gut Project partici-

pants found differences in microbiota composition and fecal

metabolome among fermented food consumers versus non-

consumers (Taylor et al., 2020). Given that fermented foods

have historically been part of many diets around the world,

consuming fermented foods may offer an effective way to

reintroduce evolutionarily important interactions. They may

also provide compensatory exposure to safe environmental

and foodborne microbes that have been lost over the course of

sanitizing the industrialized environment.

To address whether microbiota-targeted diets can positively

impact human biology, we have performed a dietary intervention

while longitudinally monitoring the microbiome and immune sta-

tus in healthy adults. Here, we study the effect of two diets, high-

fermented or high-fiber food (Fermented and Fiber-rich Food

[FeFiFo] Study; ClinicalTrials.gov Identifier: NCT03275662), on

the human immune system using -omics profiling, including

state-of-the-art immune profiling, in a randomized, prospective

study design. We observed that each intervention produced a

distinct response and that some responses were general, i.e.,
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cohort-wide, although others were individualized. Remarkably,

over the course of the 10-week intervention, we observed a

cohort-wide decrease in many inflammatory markers in individ-

uals consuming fermented foods, coincident with an increase

in microbiota diversity. These results suggest that fermented

foods may be powerful modulators of the human microbiome-

immune system axis and may provide an avenue to com-

bat NCCDs.

RESULTS

Participants successfully increased their assigned
dietary-fiber or fermented-food consumption over the
course of the study
In order to examine the effect of diet on the microbiome and the

immune system, generally healthy adults were recruited to

participate in a 10-week dietary intervention (17-week protocol,

including pre- and post-intervention), in which participants were

randomized to one of two diet arms: a high-fiber diet or a high-

fermented-foods diet (Figure 1A; Table S1). Of 381 individuals

assessed for eligibility, 39 participants were assigned (37

randomized [R], 2 non-randomized [NR]) to one of the two

interventions: a high-fiber diet (n = 21; 19 R, 2 NR) or a high-fer-

mented-foods diet (n = 18; recruitment period: August 2016–

January 2017) . One participant dropped out of the study due

to personal reasons, and two participants were prescribed anti-

biotics during the course of the study and were excluded from

analysis. The final count for participants was identical in each

arm, n = 18. Participants were adults (age 51 ± 12 years [mean

± SD]), with a mean BMI of 25 ± 4 kg/m2, predominantly women

(73%) andwhite (81%), andwith a high education level (89%with

a college degree or higher; Table S1). The study was approved

annually by the Stanford University Human Subjects Committee.

Blood and stool samples were collected longitudinally along a 3-

week pre-intervention time period (‘‘baseline’’), followed by a 4-

week ramp phase where participants gradually increased intake

of their respective diets (‘‘ramp’’), then a 6-week maintenance

phase where participants maintained a high level of consump-

tion of either fiber or fermented foods (‘‘maintenance’’), and

finally a 4-week choice period where participants could maintain

their diet to their desired extent (‘‘choice’’; Figure 1B). Stool sam-

ples were assessed for microbiota composition, function, and

metabolic output. Blood samples were used to generate a sys-

tems-level view of the immune system, including measurements

of circulating cytokine levels, cell-specific cytokine response

signaling, and cell frequency and immune cell signaling at steady

state (Figure 1B; STAR Methods). The number of participant

samples analyzed for each experimental platform and time point

varied slightly depending on sample availability (Table S2).

Importantly, participants’ gutmicrobiota at baseline did not differ

between the two arms, as determined by alpha and beta diver-

sity measurements (Figures S1A and S1B).

Participants successfully increased their consumption of fiber

or fermented foods as determined by macronutrient and micro-

nutrient data extracted from food logs generated by participants

every 2 weeks (Figure S2). Those in the high-fiber-diet arm

increased their fiber consumption from an average of 21.5 ±

8.0 g per day at baseline to 45.1 ± 10.7 g per day at the end of

http://ClinicalTrials.gov
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Figure 1. Overview of fiber fermented food study

(A) Consort flow diagram for participant enrollment, allocation, follow-up, and analysis. Side chart shows the number of participants in high-fiber (Fi) and high-

fermented (Fe) diet arm collected for each platform. *2 participants were assigned to high fiber, not randomized, by special request.

(B) The 14-week study overview timeline, sample types collection, and corresponding experimental platforms.

(C) Fiber intake in the high-fiber-diet arm shown in boxplots; fiber intake in the high-fermented-food-diet arm shown as dotted line.

(D) Fermented food intake in the high-fermented-food-diet arm shown in boxplots; fermented food intake in high-fiber-diet arm shown as dotted line. p% 0.05 via

t test denoted by asterisks and calculated for each time point relative to baseline (�2 week value).

See also Figures S1 and S2.

ll
Article
the maintenance phase (Figure 1C). Participants in the high-fer-

mented-food diet arm consumed an average of 0.4 ± 0.6 serv-

ings per day of fermented food at baseline, which increased to

an average of 6.3 ± 2.9 servings per day at the end of the

maintenance phase (Figure 1D). Importantly, participants in the

high-fiber-diet arm did not increase their consumption of fer-

mented foods (Figure 1C, dashed line), nor did participants

consuming the high-fermented-food diet increase their fiber

intake (Figure 1D, dashed line) during the course of the study.

An analysis of selectedmacro- andmicronutrients revealed dif-

ferences frombaseline to the end of themaintenance phase in the

consumption of several nutrients in the high-fiber arm. High-fiber-

diet participants increased their intake of soluble and insoluble

fiber, carbohydrates, and vegetable protein and had a modest

increase in calories, along with increases in iron, magnesium,

potassium, vitamin C, and calcium. These participants also

decreased their consumption of animal protein and sodium (Table
S3). In addition, the ratio between insoluble:soluble fiber was

significantly increased from baseline to study end (ratio = 2.6 +

0.6 at baseline, 3.5 + 1.1 at week 10; p = 0.002). Conversely,

the high-fermented-food-diet participants increased their intake

in animal protein due to the increased consumption of fermented

dairy products. Notably, despite higher consumption of fer-

mented vegetables and vegetable brine drinks, total sodium

intake did not change in the fermented-food arm compared to

their baseline diet (Table S3). In order to gain a more detailed

understanding of how participants increased their fiber or fer-

mented foods intake, fiber-rich and fermented foods were group-

ed into subcategories (see STARMethods). Fiber-rich foods were

categorized into fruits, vegetables, legumes, grains, nuts and

seeds, and other. Fermented foods were grouped into yogurt, ke-

fir, fermented cottage cheese, fermented vegetables, vegetable

brine drinks, kombucha, other fermented non-alcoholic drinks,

and other foods. Although all participants followed the
Cell 184, 4137–4153, August 5, 2021 4139



A B C Figure 2. Diet-specific effects of a fiber

versus fermented food intervention on the

host and microbiome

(A) Accuracy of leave-one-out cross-validation

(LOOCV) of random forest models predicting diet

group; separate models using host-derived data

(white bars) or microbe-derived data (black bars),

using parameter changes from baseline to end of

maintenance as model features. Recursive feature

elimination chose the minimum number of pa-

rameters needed for maximum accuracy. Black

line represents 50% accuracy (prediction ex-

pected by chance).

(B) Differences in myosin-1, model feature

selected for host proteomics model.

(C) Differences in rank-order change of Lachno-

spira, model feature selected for 16S amplicon

sequence variants (ASVs) model. Purple, fer-

mented group; green, fiber group.
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requirements for the dietary intervention, each implemented the

intervention differently in terms of specific subcategories of fi-

ber-rich or fermented foods they consumed (Figures S2A

and S2B).

The primary outcome of cytokine response score (Shen-Orr

et al., 2016) difference from baseline to end of intervention

was not significant for either arm of the study (Table S4), nor

were race or gender significant covariates. However, several

changes in secondary and exploratory outcomes were

observed. Decreases in inflammatory markers and increases

in microbiota diversity from baseline to end of intervention

were significant in the fermented-food arm; a specific subset

of SCFAs was significantly decreased in the high-fiber arm

from baseline to end of intervention. These results are dis-

cussed in greater detail later in the manuscript. For a full report

of primary and secondary outcome results, please see Table

S4. To assess participants overall health throughout the study,

blood glucose, insulin, triglycerides, low-density lipoprotein

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-

C), blood pressure, and waist circumference were measured;

however, no differences were observed in this generally healthy

cohort either between the two arms or longitudinally (within;

data not shown). Based on assessment from the Gastrointes-

tinal Symptoms Rating Scale (Svedlund et al., 1988), partici-

pants on the high-fiber diet reported an increase in stool

softness from baseline (average Bristol stool type = 3.3 ± 0.3)

to end of ramp phase (stool type = 4.1 ± 0.3; p = 0.04; paired

t test) and the end of maintenance phase (stool type = 4.1 ±

0.3; p = 0.004; paired t test), whereas the fermented-food-

diet arm reported an increase in bloating from baseline

(abdominal distention score = 0.06 ± 0.06) to the end of the

ramp phase (score = 0.4 ± 0.1; p = 0.03; paired t test), which

was no longer significant by the end of the maintenance phase.

Additional validated surveys were given to participants to

assess perceived stress, well-being, fatigue, physical activity,

and cognition; however, no significant changes were observed

between the two groups or longitudinally within the groups

(data not shown).
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A high-fiber diet and a high-fermented-foods diet result
in distinct effects on the gut microbiota and host
immune system
Given the success that participants achieved in adhering to their

assigned dietary intervention, we wondered whether each diet

intervention produced a characteristic change in participants’

microbiota or aspects of their biology.We generated random for-

est models in which a separate model was made for each assay

(listed in Figure 1B), using features quantified as the difference

between baseline (week�2 for stool samples; week�3 for blood

samples) and the end of the maintenance phase (week 10; Fig-

ure 2A). Each model used recursive feature elimination to select

models with the least number of features while maintaining the

highest accuracy (features identified for each model are listed

in Table S5). As a positive control, nutritional intake was used

in its own model, which classified participants by diet arm with

91% accuracy (leave one out cross-validation [LOOCV]). This

model relied upon intake of animal protein, total dietary fiber,

and insoluble dietary fiber for classification. As a negative con-

trol, the two baseline time points were used as parameters for

the model and had a prediction accuracy equivalent to

chance (48%).

Aside from nutrition intake, the highest accuracy in predicting

diet was achieved with the model that used human stool prote-

omic changes (89% accuracy). This model selected a single

parameter from the 230 input host proteins, myosin-1, which

increased in the high-fermented-food diet arm (Figure 2B).

Myosin-1 is highly expressed in microvilli within the brush border

of the small intestine. Its increase could indicate increased

epithelial cell turnover within the small intestine in the high-fer-

mented-food-diet cohort (Benesh et al., 2010). A more detailed

analysis on the proteomic differences between the high-fiber-

and high-fermented-food-diet arms has been reported previ-

ously (Gonzalez et al., 2020).

The four next highest performing models were all generated

using measurements of the microbiota, including overall 16S

rRNA-based composition (80% accuracy), stool microbe prote-

omics (74%), stool SCFAs (67%), and metagenomic
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measurement of carbohydrate-active enzymes (67%). Micro-

biota diversity was a less effective model (60%) in discerning

which diet a participant followed. The overall microbiota compo-

sition model was characterized by an increase in the genus

Lachnospira in the high-fiber-diet arm and a decrease in the

high-fermented-food arm relative to baseline (Figure 2C). Lach-

nospira has been positively associated with high dietary fiber

consumption in a human prospective study (Lin et al., 2018).

We found that, in both diet arms, participants’ gut microbiota

composition stayed highly individualized during the intervention

rather than clustering by diet at the end of the intervention, find-

ings similar to those reported in previous human microbiota

studies (Johnson et al., 2019; Wu et al., 2011). However, using

Bray-Curtis beta diversity, the linear regression of the distance

from centroid versus time using a linear mixed effects model

had a negative coefficient for the both the high-fiber- and high-

fermented-food-diet arms (slope =�4.2e�3, p = 1.6e�3; slope =

�5.3e�3, p = 1.4e�4, respectively). In other words, an individ-

ual’s microbiota composition became more similar to that of

other participants within the same arm over the intervention,

despite retaining the strong signal of individuality.

Models generated using measurements of host immune pa-

rameters, including endogenous immune cell signaling (61%), in-

flammatory cytokines (61%), and immune cell frequency (58%),

were predictive of diet arm but less so thanmany of the observed

changes to the microbiota listed above. Models generated using

immune cell signaling capacity (49%) were no better than

chance at predicting diet group. These models demonstrate

that the two dietary interventions produced characteristic re-

sponses in participants’ human and microbial biology. Diet-

induced changes to the microbiota may be more consistent

across individuals than immune system responses, in accor-

dance with the interventions targeting the gut microbiota.

Fiber intake shifts carbohydrate-processing capacity
and metabolic output of the microbiota
Because predictive models revealed diet-specific responses in

participants, we investigated more thoroughly how each diet

impacted the host microbiota. The high-fiber-diet arm was as-

sessed for changes in microbiota composition, diversity, func-

tion, and microbially derived products of fermentation. Based

on interventional studies in mice and humans and long-term as-

sociation studies between high-fiber diets and increased micro-

biota diversity, we hypothesized that increasing dietary fiber

consumption would lead to an increase in microbiota diversity

(Sonnenburg et al., 2016; De Filippo et al., 2010; Cotillard

et al., 2013; Le Chatelier et al., 2013). However, alpha diversity,

as determined by the number of observed amplicon sequence

variants (ASVs), Shannon diversity, or phylogenetic diversity,

did not change cohort-wide over the course of the intervention

(Figures 3A, S1C, and S1D). Nor were there changes in alpha di-

versity when correlated with the overall quantity of dietary fiber

consumed per participant as determined using a linear mixed ef-

fects model varying fiber intake versus alpha diversity across

study and correcting for participant (p > 0.05). However, we

did observe an increase in the relative abundance of microbial

proteins per gram stool of the high-fiber-diet arm from baseline

(week �2 and week 0) to the end of the maintenance phase
(week 10), suggesting that the density of microbes within the

microbiota may have increased with higher fiber consumption

(Figure 3B). No specific taxon (ASV) exhibited altered relative

abundance over time across the entire high-fiber-diet arm.

Although increased Lachnospira relative abundance was

observed in the high-fiber-diet arm when compared to the

high-fermented-food-diet arm (Figure 2C), this genus was not

significantly increased within the high-fiber-diet arm from base-

line to the end of themaintenance phase. This discrepancy could

be due to the lower sample size when comparing within one diet

arm alone or due to decreasing relative abundance of Lachno-

spira in the high-fermented-food-diet arm over the course of

the intervention.

Despite the lack of generalized changes to microbiota diver-

sity or composition in the high-fiber-diet arm, the increased per-

centage of microbial proteins in the stool suggests that fiber may

fuel the growth of bacteria adept at fiber degradation. Metage-

nomic sequencing revealed an increase in the relative abun-

dance of 11 different carbohydrate-active enzymes (CAZymes);

of 10 putative non-ambiguous substrate predictions, all were

predicted to degrade plant cell wall carbohydrates (Figure 3C).

There were no CAZymes that decreased in relative abundance,

indicating that the high-fiber diet led to an overall increase in

complex carbohydrate processing capacity cohort-wide and

not just a reconfiguration of carbohydrate utilization functionality.

Therefore, although fiber consumption appears to consistently

increase CAZyme abundance, the taxonomic changes that

result in these increases may differ across participants. The indi-

vidualized taxonomic solutions to increasing CAZymes may

reflect the individualized collection of microbes in each person’s

gut but may also be a result of the different types of complex car-

bohydrates consumed by the participants who were eating non-

identical high-fiber diets.

To assess the metabolic output of the microbiota in the high-

fiber-diet arm, levels of fecal SCFAs were measured. We did

not observe an increase in butyrate as has been previously re-

ported in some studies of dietary fiber consumption (So et al.,

2018). However, significant heterogeneity exists in butyrate re-

sults between dietary fiber studies, possibly due to incomplete

fermentation and/or colonic absorption by the host (So et al.,

2018). We did observe a decrease in the branched-chain fatty

acids (BCFAs) isobutyric and isovaleric acid, as well as valeric

acid from baseline to the end of the maintenance phase (Fig-

ure 3D). Elevated isobutyric and isovaleric acid have been asso-

ciated with hypercholesterolemia (Granado-Serrano et al., 2019)

and elevated valeric acid in autism spectrum disorder (Liu et al.,

2019). It is not clear whether these changes in BCFAs are a result

of decreased production by the microbiota or decreased con-

sumption of dairy and beef, which contain high levels of BCFAs

(Ran-Ressler et al., 2014).

Despite observed changes in CAZyme profiles and SCFA

levels, we were surprised that, given the substantial increase in

fiber consumption in this arm, there was not a larger microbiota

response. We wondered whether the intervention was too brief

for the microbiota to adequately adapt to the increase in fiber

consumption. Specifically, we wondered whether increased

consumption of fiber was overwhelming the fermentative capac-

ity of the participants’ microbiota. Carbohydrateswere extracted
Cell 184, 4137–4153, August 5, 2021 4141
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Figure 3. Participants consuming fiber exhibit shifts in the functional profile of the microbiome

(A) Observed number of ASVs from 16S rRNA amplicon sequencing; no significant changes during any intervention time point compared to baseline (week�2 or

week 0; paired t test).

(B) Proteinsmeasured using LC-MS (Gonzalez et al., 2020) were categorized as human ormicrobe derived using the HMP1 database (HumanMicrobiome Project

Consortium, 2012). Microbe proteins as a percent of total stool proteins increase from baseline to end of maintenance phase (week 10, p = 0.003 from week�2,

p = 0.01 from week 0, paired t test).

(C) CAZymes identified frommetagenomic sequencing as significantly changing in relative abundance from baseline to end of maintenance phase (FDR% 0.05;

q-value % 0.1; SAM two-class paired). CAZymes were annotated using dbCAN and assigned to functional categories (Yin et al., 2012; Huang et al., 2018).

(D) Significant decreases in two branched-chain fatty acids and valeric acid in stool (p = 0.044, 0.033, and 0.033; paired t test). Outliers not plotted, but all values

were included for statistical analysis testing (see STAR Methods).

(E) Total fiber intake (grams) correlated with percentage of carbohydrates in stool using linear mixed effects (LME) model (p = 8e�4).

See also Figure S1.

ll
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from stool samples, acid-hydrolyzed to release monosaccha-

rides, and then measured using high-performance liquid

chromatography (HPLC). A significant correlation was observed

between increased fiber consumption among participants and

an increase in total stool carbohydrates (p = 8e�4; linear mixed

effectsmodel [LME] accounting for participants across time; Fig-

ure 3E). These data suggest the carbohydrate degradation by

participants’ microbiota was insufficient to process the

increased fiber consumption, consistent with analyses of indus-

trialized microbiomes (Smits et al., 2017; Vangay et al., 2018). It

is possible that a longer intervention would have allowed for

adequate microbiota remodeling and recruitment from external

sources. Alternatively, the deliberate introduction of fiber-

consuming microbes may be required to increase the microbio-

ta’s fermentative capacity.

High-dimensional immune system profiling reveals sub-
types of host responses to fiber intake
Changes to the microbiota in the high-fiber-diet arm led us to

wonder whether participants’ immune systems were coinciden-

tally impacted. We tested whether participants’ immune status,

as measured by assays selected to capture complementary as-

pects of immune cell signaling activity both intracellularly and

through cytokinemediators, were altered (Figure 4A). Amultiplex

proteomic platform assessed circulating cytokines and addi-

tional immune modulators in serum with a panel specific for

inflammation (Olink technology; Table S6). Whole blood was

subjected to single-cell mass cytometry (cytometry by time-of-

flight, CyTOF; Table S6; Figure S3) with a 50-parameter panel

of antibodies to delineate major immune cell types (cell fre-

quencies) and activation of canonical immune cell signaling

pathways (endogenous signaling; Table S6). Finally, immune

signaling capacity wasmeasured by stimulating peripheral blood

ex vivo with lipopolysaccharide (LPS) or one of five cytokines

involved in inflammatory signaling (interleukin-6 [IL-6], IL-2, IL-

10, interferon a [IFNa], and IFNg); cell-type-specific responses

were measured in the Janus kinase/signal transducer and acti-

vator of transcription proteins (JAK/STAT) and mitogen-acti-

vated protein (MAP) kinase pathways by flow cytometry (Table

S6). From each of these assays, a set of immune features was

derived as a descriptor of immune activity (see STAR Methods).

Comparison of immune features from baseline to the end of the

maintenance phase in the high-fiber-diet participants revealed

three clusters of participants representing distinct immune

response profiles (Figure 4B). These clusters were driven by

observed changes in endogenous signaling, most notably

decreasing signaling in two clusters (‘‘low-inflammation i’’ and

‘‘low-inflammation ii’’), as opposed to an increase in signaling in

the ‘‘high-inflammation’’ cluster. Examining individual immune

featureswithin the ‘‘high-inflammation’’ cluster revealed increases

in JAK/STAT andMAP kinase signaling inmonocytes, B cells, and

CD4 and CD8 T cells. Both low-inflammation clusters showed de-

creases in these markers (Figures 4C and S4). Taken together,

these data suggest divergent immune system responses to the

high-fiber intervention, with high-inflammation participants exhib-

iting broad increases in steady-state immune activation versus

low-inflammation participants exhibiting decreases in steady-

state immune activation. Notably, no differences in total fiber
intake were observed between inflammation clusters, nor were

there significant differences in BMI (t test; p > 0.05).

In order to determine whether these divergent immune system

phenotypes were reflected in the participants’ microbiomes, we

examined alpha diversity and microbiota composition in the

context of the three inflammation clusters. Specifically, a com-

parison of the observed ASVs at the baseline time points

(week�2 and week 0) for each group revealed higher microbiota

diversity in the low-inflammation ii group compared to the high-

inflammation group (p = 0.037; unpaired t test; Figure 4D).

Although there was not a significant difference in microbiota

alpha diversity between the high-inflammation and low-inflam-

mation i groups (p = 0.096), there was a trend toward increasing

microbiota diversity in the low-inflammation group i that followed

the intermediate inflammatory response observed. These data

are consistent with a previous study demonstrating that a dietary

intervention, which included increasing soluble fiber, was less

effective in improving inflammation markers in individuals with

lower microbiome richness (Cotillard et al., 2013).

A zero-inflated beta regression (ZIBR) model (Chen and Li,

2016) to identify differences in abundance or presence of taxa be-

tween clusters over time (Table S7) revealed greater prevalence of

Coprococcus, Ruminococcus, Oscillospira, and Anaerostipes in

the low-inflammation i compared to the high-inflammation cluster

during the high-fiber-diet intervention (Figure 4E). Coprococcus

has been associated with higher quality of life indicators, and

both Ruminococcus and Oscillospira have been associated with

improved markers of health, including leanness and improved

lipid profile (Valles-Colomer et al., 2019; Klimenko et al., 2018;

Chen et al., 2020). Anaerostipes had a significant joint p value in

the ZIBRmodel (Table S7) andwas previously described as a ‘‘hy-

per-butyrate producer’’ (Li, 2014). In contrast, Akkermansia was

enriched in the high-inflammation relative to low-inflammation ii

cluster. Akkermansia has been positively associated with meta-

bolic health (Derrien et al., 2017) but has also been associated

with low-fiber diets and is rare in populations consuming tradi-

tional diets (Earle et al., 2015; Desai et al., 2016; Smits et al.,

2017). There was amodest difference in a Lachnospiraceae taxon

between the two low-inflammation clusters. Determining whether

a particular taxon is beneficial to human health is problematic,

given that effects are likely highly context specific and can be

influenced by subspecies (i.e., strain)-specific differences.

Fermented food intake increases microbiota diversity
In contrast to the high-fiber-diet arm, the microbiota of partici-

pants consuming the high-fermented-foods diet exhibited an

overall increase in alpha diversity over the course of the interven-

tion, as determined by overall ASVs, phylogenetic diversity (PD)

whole tree, and Shannon diversity (Figures 5A, 5B, and S1E).

This diversity increase was sustained during the choice period,

when fermented food intake was higher than baseline but lower

than at the end of maintenance, suggesting that increased diver-

sity likely involved gut ecosystem remodeling rather than an

immediate reflection of consumed quantities. We additionally

assessed gender, race, and BMI as covariates in the model

of alpha diversity and time, but none were significantly associ-

ated (LME; p > 0.05). A recent study reported that alcohol

consumption could be a confounder in gut microbiota studies
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Figure 4. Fiber-consuming participants exhibit varied immune responses that track with differences in microbiome composition and

diversity

(A) Immune features derived from immunophenotyping assays.

(B)Heatmapdepictingdifferences in immune features (groupedby immune feature type) frombaseline (week�3) toendof intervention (week10), rescaledfromminimum

change, >�1 to maximum change, <1; no change, 0. Each row is a participant, and rows are clustered using hierarchical clustering by feature values in the fiber arm.

(C) Counts of the mean positive (red) or mean negative (blue) changes in endogenous immune cell signaling from baseline (week�3) to end of maintenance (week

10) for the three clusters. Non-significant changes are shown in light color; significant changes are shown in dark color (SAM; two-class paired; q-value % 0.1).

(D) Average number of observed ASVs at baseline (week�2 and week 0) high-inflammation cluster (red), low-inflammation i cluster (gold), and low-inflammation ii

cluster (blue; unpaired t test significant p = 0.037).

(E) Significant taxa binned using tip_glom (phyloseq package in R) identified in pairwise comparisons using a zero-inflated beta regression, plotted over time.

Percentage of participants with taxa present in high-inflammation (red) and low-inflammation i (gold) clusters is shown in the first three panels (group logarithmic

model adjusted p% 0.05); abundance (percent of composition) of high-inflammation (red) and low-inflammation ii (blue) clusters is shown in fourth panel (group

beta regression model adjusted p% 0.05); and abundance (percent of composition) of low-inflammation i (gold) and ii (blue) clusters is shown in fifth panel (group

beta regression model adjusted p % 0.05).

See also Figures S3 and S4.
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Figure 5. High-fermented-food diet increased microbiota diversity and altered composition

(A and B) Observed ASVs (A; p values generated using paired t test) and Shannon diversity (B) increased from baseline through choice phase. Observed ASVs

significantly correlated with time using LME model (p = 2.3e�3 for observed ASVs; p = 1.4e�3 for Shannon).

(C) Total fermented food intake, yogurt, and vegetable brine drinks positively correlated with observed ASVs using LME model (adjusted p % 0.05).

(D) Rank-normalized ASVs that were significantly correlated with fermented food consumption over time using an LME model (adjusted p % 0.05). Graphs are

colored by taxonomic family.

(E) NewASVs (not present at baseline weeks�2 or 0 but detected at any other time during the intervention) that were detected in fermented foods aggregated and

summed for each participant and plotted as a percentage of all new ASVs by time point for the high-fermented-food-diet arm. Dotted line indicates trend for high-

fiber-diet arm.

See also Figures S1, S5, and S6.
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(Vujkovic-Cvijin et al., 2020). There was no difference in alcohol

consumption between arms at baseline, nor did alcohol con-

sumption significantly change over the course of the study

(LME; p > 0.05). Notably, although the number of servings of

fermented food consumed was correlated to an increase in

diversity, this relationship was not as strong as the relationship

between diversity and time (Figure 5C). Participants in the

high-fermented-food-diet arm consumed a variety of fermented

foods, including yogurt, kefir, fermented cottage cheese, kom-

bucha, vegetable brine drinks, and fermented vegetables, such

as kimchi. Interestingly, although the total number of fermented

food servings consumed per day was positively correlated with

alpha diversity, the number of servings of yogurt and vegetable
brine drinks were each more strongly correlated (Figure 5C).

Yogurt and vegetable brine drinks were consumed at higher

rates relative to the other types of fermented foods, which may

contribute to the stronger correlation. Unlike participants

consuming the high-fiber diet, no increase in relative abundance

of microbial proteins per gram stool was observed in the high-

fermented-food arm, indicating that altered microbial density

did not accompany the increase in diversity (data not shown).

To examine whether specific taxa changed over time cohort-

wide, ASVs were rank-normalized per sample and their relation-

ship with time was modeled using a linear mixed-effect model.

Nine ASVs increased over time, all in the Firmicutes phylum,

including four in the Lachnospiraceae family, two in the
Cell 184, 4137–4153, August 5, 2021 4145
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Ruminococcaceae family, and one in the Streptococcaceae

family (Figure 5D). An important consideration was whether the

new taxa detected were microbes directly sourced from the

fermented foods. Taxa present in the commonly consumed fer-

mented foods in the study were identified through 16S rRNA am-

plicon sequencing (Figure S5) and compared with those newly

observed in the participants’ microbiota during the intervention.

Only a small percentage of the new microbiota ASVs were com-

mon with those found in fermented foods. Peak overlap of new

microbiota ASVs and fermented food ASVs occurred early in

the intervention, when participants’ overall microbiota diversity

was lower than at the end of maintenance phase (5.4%; Fig-

ure 5E). At later time points, overlapping new microbiota ASVs

and fermented food ASVs in the fermented-food arm were not

different than those seen in the high-fiber-diet arm (Figure 5E).

These data suggest that the increase in microbiota diversity in

the high-fermented-food-diet arm was not primarily due to

consumed microbes but rather a result of shifts in or new acqui-

sitions to the resident community. These data support that fer-

mented food consumption has an indirect effect on microbiota

diversity, rendering the microbiota receptive to the incorporation

or increased representation of previously undetected strains

within the gut.

The abundance of several CAZyme family members changed

from baseline to the end of maintenance phase in the high-fer-

mented-food-diet arm (Figure S6A). However, these changes

did not mirror those observed in the high-fiber-diet arm. Specif-

ically, all 11 CAZymes that differed in the high-fiber-diet arm

increased in abundance from baseline to the end of maintenance

phase. However, in the fermented-food-diet arm, the relative

abundance of only 8 CAZymes (3 of which were annotated as

starch degrading and 5 annotated as plant degrading) differed

and all decreased in the maintenance phase relative to baseline.

Fermented food intake decreases markers of host
inflammation
Elevated cytokine levels at steady state have been linked to

chronic, low-grade inflammation. Using an inflammation panel

to assess circulating cytokines in serum, we identified 19 of 93

cytokines, chemokines, and other inflammatory serum proteins

that decreased over the fermented food intervention, including

IL-6, IL-10, and IL-12b and other inflammatory factors (Figure 6A;

significance analysis of microarrays [SAM]; false discovery rate

[FDR] % 0.05; q-value % 0.1). IL-6 is a key mediator of chronic

inflammation; is elevated in several chronic inflammatory condi-

tions, such as rheumatoid arthritis, type-2 diabetes, and chronic

stress; and is a commonly usedmetric of inflammation (reviewed

in Tanaka et al., 2014). Notably, none of the 19 cytokines that

decreased in the high-fermented-food-diet arm differed in the

high-fiber-diet arm. The magnitude of these changes was not

significantly different between binned ‘‘high’’ and ‘‘low’’ fer-

mented food consumers (t test; adjusted p > 0.05; n = 19), nor

did any change correlate with BMI. We also observed an overall

decrease in endogenous signaling, as determined by measuring

activation levels of fifteen proteins from four major cell types:

CD4+ T cells; CD8+ T cells; B cells; and classical monocytes.

Specifically, there were decreased levels of activation in 14 of

the 60 different cell-type-specific signaling responses and only
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one signaling increase (Figure 6B). This decreased signaling

was observed across all four cell types tested, consistent with

a broad change in immune status in individuals consuming fer-

mented foods. Analysis of CyTOF data to identify the frequency

of a larger set of immune cell types revealed that effector mem-

ory CD4+ T cells increased and non-classical monocytes

decreased during the intervention (Figures 6C and S3). To eval-

uate response strength to an immune stimulus, which can be

impaired in situations of immune cell exhaustion and aging, we

measured the signaling capacity of CD4+ T cells, CD8+ T cells,

and B cells in response to ex vivo stimulation but did not find

any signaling capacity changes in either diet arm. Together,

these data are consistent with an overall cohort-wide decrease

in inflammation in the fermented-food-diet arm.

Metabolites in the blood are tied to physiological processes of

the host and are derived from diet, the gut microbiota, and host

metabolic processes. We were curious whether changes in the

serum metabolomic profile of individuals that consumed fer-

mented foods reflected the overall decrease in inflammatory

cytokines observed in the high-fermented-food-diet arm. Untar-

geted metabolomics on serum samples at baseline (week �2)

and end of maintenance (week 10) was conducted using

untargeted, high-throughput liquid chromatography-mass spec-

trometry (LC-MS). To investigate whether changes in serum

metabolites were significantly associated with changes in in-

flammatory cytokines, we calculated the correlation between

each metabolite-cytokine pair. Thirty-eight correlations were

statistically significant (Pearson; adjusted p % 0.05; Benjamini-

Hochberg correction), 18 of which were positive and 20 of which

were negative (Figure S6B).

Systems-level microbiome and immune system
longitudinal profiling as a method for revealing
coordinated host-microbe relationships
Variation in food choices, the individualized nature of partici-

pants’ microbiota, and the extensive microbiota and immune

system -omics data generated allowed for a unique opportunity

to uncover novel human microbiome-immune relationships. To

determine the relationship between the microbiota and immune

system in a state of change, differences between the end of

intervention (week 10) and baseline (week �3 for blood; week

�2 for stool) were calculated for each parameter. These differ-

ences were used to determine Spearman correlations between

each microbiome feature type (ASVs, alpha diversity, SCFAs,

microbe proteomics, stool metabolomics, and CAZymes) and

each host feature type (inflammatory cytokines, immune cell

signaling, immune cell frequency, and host proteomics). A num-

ber of significant correlations (corrected using Benjamini-Hoch-

berg hypothesis correction) between microbiota and host

feature type were identified with host stool proteins by micro-

biota CAZymes having a high fraction of significant correlations

(Figure 7A). Host proteins were annotated and categorized by

disease association or function as defined by the Ingenuity

Pathway Analysis Core Analysis, Diseases and Functions Anal-

ysis (STAR Methods; Table S8). The majority of correlations

between CAZymes and disease-associated proteins were nega-

tive, with proteins assigned to inflammatory response having the

highest count of significant correlations (Figure 7B). These
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Figure 6. Fermented food consumption decreases levels of inflammation

(A) Cytokines, chemokines, and other serum proteins plotted that change significantly from baseline (week �3) to end of intervention (week 10; SAM two-class

paired; FDR % 0.05; q-value % 0.1). Negative correlations for levels of each analyte across time calculated using LME. NPX refers to the normalized protein

expression used by Olink Proteomics’ log2 scale. Fgf-21 also significantly decreased across time (data not shown).

(B) Cell-type-specific endogenous signaling proteins, measured using CyTOF, that change significantly from baseline (week�3) to end of intervention (week 10;

SAM two-class paired; FDR < 10%). Arcsinh ratio was plotted from week �3 to week 10.

(C) Fold change of cell frequencies (calculated as percentage of CD45+ cells) that change significantly from baseline (week �3) to end of intervention (week 10;

Wilcoxon paired test; adjusted p % 0.05).

See also Figures S3 and S6.
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associations suggest that CAZymes and host proteins may

respond to dietary interventions in coordinated yet opposing di-

rections (i.e., increased CAZyme abundance correlates with

decreased levels of inflammation-associated proteins) and

may serve as a direct link between diet, the microbiome, and

host physiology.

Our analysis also revealed a relatively high fraction of signifi-

cant correlations between immune cell frequency and stool

SCFAs. Specifically, as fecal butyrate increased, B cell fre-

quency decreased (Figure 7C). B-cell-depleting therapeutics

can be effective treatments for immune-mediated diseases,

including multiple sclerosis, rheumatoid arthritis, and type-1 dia-

betes (Fillatreau, 2018). Interestingly, although fecal butyrate did

not increase significantly cohort-wide during the high-fiber-diet

intervention, the majority of participants whose butyrate

increased while B cell frequency decreased were in the high-fi-

ber-diet arm. Consolidating data from both diet arms revealed

this negative association between fecal butyrate and B cell fre-

quency, indicating that a larger cohort may have led to a signif-

icant increase in butyrate in the high-fiber-diet arm.

The correlations identified between immune cell signaling ca-

pacity and microbiome-encoded CAZymes revealed that the

abundance of certain CAZymes were largely negatively corre-

lated with cell signaling capacity (Figure 7D). These data indicate

that the apparent attenuation in inflammation indicated by

decreased basal-level phosphorylation may be further enhanced

by CAZyme-linked decreases in cell responsiveness to inflam-

matory cues. In other words, as participants’ microbiome CA-

Zymes increase in relative abundance, they may exhibit a

decrease in basal inflammatory status combined with being

less responsive after cytokine stimulation.

DISCUSSION

Extensive data across the field of gut microbiome science have

established diet as a major driver of the species and functions

that reside within an individual’s gut. Poor diet is a known contrib-

utor to NCCDs that are rapidly spreading globally as more popu-

lations adopt Western-style diets (Lozano et al., 2012; GBD 2015

Mortality andCauses of Death Collaborators, 2016). Furthermore,

many NCCDs are driven by chronic inflammation, an immunolog-

ical state that is modulated by the gut microbiota. A logical next

phase of gutmicrobiome science is establishing howdiets that in-

fluence the gut microbiota modulate human immune status. In

this study, we used a randomized, prospective dietary interven-

tion model to assess how two components of diet known to

interact with the gutmicrobes, high-fiber and fermented foods, in-

fluence the human microbiome and immune system.

Using multiple -omics measurements of the microbiome and

host parameters, including state-of-the-art sequencing and

immune-profiling technologies, we found that high-fiber and

high-fermented-food consumption influence the microbiome

and human biology in distinct ways. One stark difference be-

tween these two diets was their impact on gut microbiota diver-

sity. Low microbiota diversity is associated with many NCCDs,

such as obesity and diabetes (Turnbaugh et al., 2009; Le Chate-

lier et al., 2013), and with industrialized lifestyles known to pre-

dispose individuals to NCCDs (reviewed in Sonnenburg and
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Sonnenburg, 2019). Fiber-rich foods contain an abundance of

MACs, which provide a fermentable carbon source for themicro-

biota. Despite sustained high levels of diverse plant-derived die-

tary fiber in these participants over 6 weeks, we did not observe

a cohort-wide microbiota diversity increase in the high-fiber-diet

arm. It is possible that the relatively short duration of the study

was not sufficient to allow for the recruitment of new taxa to

the microbiota, which could be an indication that exposure to

newmicrobes was limited within the environment of participants.

Environmentally constrained diversity is consistent with (1) high

levels of sanitation in industrialized populations leading to less

sharing of microbes between individuals (Martı́nez et al., 2015),

(2) the necessity of dietary fiber plus administered microbes to

restore diversity to the gut microbiota in a mouse model (Son-

nenburg et al., 2016), and (3) the loss of strains and their associ-

ated glycan-degrading capacity observed in US immigrants

(Vangay et al., 2018). The detection of plant-glycan-derived car-

bohydrates in the stool of the high-fiber-diet participants is

consistent with incomplete microbiota fermentation that might

be expected in an industrialized microbiota.

The increased microbiota diversity observed in the fermented-

food-diet arm was coincident with decreases in numerous

markers of inflammation, measured with distinct technologies.

These correlated changes are consistent with a broad range of

studies demonstrating a link between decliningmicrobiota diver-

sity and increased NCCD prevalence (reviewed in Mosca et al.,

2016). Notably, the new taxa contributing to the increased diver-

sity were largely not from the fermented foods themselves, indi-

cating an indirect effect of their consumption on remodeling the

microbiota. It is unclear whether these ‘‘new’’ taxa were newly

recruited to the microbiota from the environment or were already

present but undetected and increased in relative abundance to

detectable levels during the intervention. The slow trajectory of

diversity increase resulted in the greatest microbiota diversity

observed during the choice phase, where fermented food intake

was higher than at baseline, but lower than during the mainte-

nance period. The slow and steadily increasing diversity sug-

gests a time element for remodeling of the microbiome compo-

sition through diet, consistent with the relative recalcitrance of

the human microbiota to rapid diet-induced remodeling (Wu

et al., 2011). Fiber-induced microbiota diversity increases may

be a slower process requiring longer than the 6 weeks of sus-

tained high consumption achieved in this study. Importantly,

high-fiber consumption did appear to increase stool microbial

protein density, carbohydrate-degrading capacity, and altered

SCFA production, indicating that microbiome remodeling was

occurring within the study time frame, just not through an in-

crease in total species. Given the distinct responses of partici-

pants to these two diets, whether a diet composed of both

high-fiber and fermented foods could synergize to influence

the host microbiota and immune system is an exciting possibility

that remains to be determined.

The malleability of the human microbiome, its integration into

the immune system, and its responsiveness to diet make it a

highly attractive target for therapeutic intervention. Knowledge

of how specific dietary interventions impact themicrobiota could

be leveraged to develop effective diets that improve human

health. Because components of diet, unlike typical
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Figure 7. Interaction between the host immune system and microbiota

(A) Correlation of difference between baseline and end of maintenance was calculated for each parameter, and percent of significant pairwise correlations

between microbe and host assays was plotted. Light gray denotes correlations with an adjusted p % 0.05; dark gray shows adjusted p % 0.01 (Benjamini-

Hochberg hypothesis correction).

(B) Positive (red) and negative (blue) correlations between host proteins annotated by disease or function (source: Ingenuity Pathway Analysis) and CAZymes (p

value adjusted % 0.05) .

(C) Changes in stool butyrate levels versus blood B cell frequency changes from baseline (week �3 stool; week �2 blood) to end of maintenance (week 10) for

both high-fiber (green) and high-fermented-food (purple) arms (slope = �0.49, p value adjusted = 0.033) B cells are defined as CD45+CD66�CD3�CD19�

(Figure S3); frequency quantified as B cell frequency as a fraction of CD45+CD66� cells.

(D) Significant correlations between CAZymes (colored by CAZy family) and immune cells signaling capacity, labeled by pSTAT, cell type, and stimulatory

cytokine (p value adjusted % 0.05) .
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pharmaceuticals, do not require regulatory approval for use in

humans, they provide an avenue to abate microbiota deteriora-

tion and improve human health quickly to avert the coming global

NCCD health crisis (GBD 2015 Mortality and Causes of Death

Collaborators, 2016). We envision two primary outcomes from

additional studies like the ones conducted here. First, precision

insight into how one type of dietary intervention may differentially

impact individuals, enabling diet to be leveraged in numerous, in-

dividual-specific clinical contexts. Second, population-wide

insight for diets that broadly improve health, which can serve

to guide public health policy, dietary recommendations, and in-

dividual choice. For example, fermented food consumption re-

sulted in a cohort-wide generalized dampening in inflammation

markers over the course of the intervention. This result is espe-
cially striking, given that participants in this arm changed little

else in their diet and consumed a variety of fermented foods

(i.e., some ate mostly fermented dairy products although others

ate mostly fermented vegetable products). Additional rigorous

studies investigating fermented foods and their impact on hu-

man health may lead to the incorporation of these foods as a

key component of a healthy diet.

Although human studies provide the advantage of illuminating

microbiome-host relationships that are relevant to human

biology, these come at the cost of mechanistic insight. We

view this as a worthwhile trade-off, given the ability to reverse

translate findings into animal models for mechanistic inquiry

based on human-relevant data (Spencer et al., 2019). For

example, the host protein and CAZyme relationships we
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identified here could informmechanistic mouse studies aimed at

understanding the causal relationship between diets that in-

crease carbohydrate-utilizing enzymes and decrease inflamma-

tory proteins. In addition, as longitudinal, correlation data (e.g.,

between microbiome and immune system) for humans accumu-

lates for dietary perturbations, these data can be mined to eluci-

date a map of interactions between the microbiome and human

biology. Such amapwill be useful, not only in correcting immune

dysregulation that contributes to disease but can be applied in

numerous contexts of health and disease to tune biology for opti-

mized physical and mental performance, fighting cancer and

numerous chronic diseases, or combatting infectious disease.

Limitations of the study
This study was designed to explore effects of microbiota-tar-

geted diets on both the microbiome and the immune system in

humans using multi-omics. Although this study provided signifi-

cant insight into the effects of diets high in fiber and high in fer-

mented foods on microbial composition and activity as well as

immune status, there are several limitations that we hope can

be addressed in future studies. The study included a modest

number of participants (n = 18/arm), which limits statistical po-

wer and presents challenges with regard to generalizability of re-

sults. The study had no control arm and instead relied upon com-

parisons between the two dietary arms and within-participant

comparisons over time. The dietary intervention phase was per-

formed over a 4-week ramp period and a 6-week maintenance

period; we do not know the durability of many of the changes

we observed or whether further changes would arise during a

longer intervention. The study was performed among healthy in-

dividuals; futurework should examine the effects of these diets in

the context of disease or inflammatory conditions, as well as the

effect of possible synergy between diets rich in both fiber and

fermented foods. Finally, although current data demonstrate a

profound effect of these diets on both the microbiome and im-

mune status, further work must examine causality of these inter-

related aspects of humanbiologywith an emphasis on themech-

anistic underpinnings using additional experimental models.
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STAT1 pY701 147 (clone 4a) BD Biosciences Cat# 612233; RRID: AB_399556

STAT5 pY694 149 (clone 47) BD Biosciences Cat# 611965; RRID: AB_399386

S6 pS235/236 150 (clone 2F9) CST Cat# 4856; RRID: AB_2181037

Erk1/2 pT202/Y204 152 (clone D13.14.4E) CST Cat# 4370; RRID: AB_2315112

P38 pT180/Y182 154 (clone 36/p38) BD Biosciences Cat# 612289; RRID: AB_399606

Zap70/Syk pY319/Y352 160 (clone 17a) BD Biosciences Cat# 612574; RRID: AB_399863

TBK1/NAK pS172 161 (clone D52C2) CST Cat# 5483; RRID: AB_10693472

IkBa amino-terminal 163 (clone L35A5) CST Cat# 4814; RRID: AB_390781

STAT6 pY691 165 (clone 18) BD Biosciences Cat# 611597; RRID: AB_399039

FoxP3 167 (clone PCH101) Thermo Fisher Cat# 14-4776-82; RRID: AB_467554

Ki67 169 (clone SolA15) Thermo Fisher Cat# 14-5698-82; RRID: AB_10854564
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STAT4 pY693 170 (clone 38) BD Biosciences Cat# 612738; RRID: AB_399957

4E-BP1 pT37/46 172 (clone 236B4) CST Cat# 2855; RRID: AB_560835

Chemicals, peptides, and recombinant proteins

Intercalator-Ir Fluidigm Cat# 201192B

Calibration Beads, 151/153Eu Fluidigm Cat# 201073

Calibration Beads, EQTM Four Element Fluidigm Cat# 201078

Critical commercial assays

MoBio PowerSoil kit QIAGEN Cat# 12888-100

Olink INFLAMMATION (v.3004) Olink http://www.olink.com/products/

target/inflammation/

Deposited data

All -omics data, analyses, and resources This paper https://github.com/SonnenburgLab/

fiber-fermented-study

Software and algorithms

R(v4.0.2) R Core Team https://www.r-project.org/

RStudio(v1.3) RStudio Team https://www.rstudio.com/

tidyverse(v1.3.0) Wickham et al. (2019) https://www.tidyverse.org/

siggenes(v1.62.0) Holger Schwender https://www.bioconductor.org/packages/

release/bioc/html/siggenes.html

knitr(v1.29) Yihui Xie https://cran.r-project.org/web/

packages/knitr/index.html

RColorBrewer(v1.1-2) Erich Neuwirth https://cran.r-project.org/web/

packages/RColorBrewer/index.html

CellEngine PrimityBio; Björnson and Sanguinetti, 2020 http://immuneatlas.org

ggpubr(v0.4.0) Alboukadel Kassambara https://cran.r-project.org/web/

packages/ggpubr/index.html

magrittr(v1.5) Stefan Milton Bache and

Hadley Wickham

https://cran.r-project.org/web/

packages/magrittr/vignettes/magrittr.html

Hmisc(v4.4.0) Frank E. Harrell https://cran.r-project.org/web/

packages/Hmisc/index.html

ggplot2(v3.3.2) Wickham, 2016 https://cran.r-project.org/web/

packages/ggplot2/index.html

pheatmap(v1.0.12) Raivo Kolde https://cran.r-project.org/web/

packages/pheatmap/index.html

phyloseq(v1.32.0) McMurdie and Holmes, 2013 https://www.bioconductor.org/

packages/release/bioc/html/phyloseq.html

dada2(v1.16.0) Callahan et al. (2016) https://www.bioconductor.org/

packages/release/bioc/html/dada2.html

nlme(v3.1.149) J. Pinheiro et al. https://cran.r-project.org/web/

packages/nlme/index.html

caret(v6.0.86) Max Kuhn https://cran.r-project.org/web/

packages/caret/index.html

ZIBR(v0.1) Eric Zhang Chen https://github.com/chvlyl/ZIBR

vegan(v2.5-6) Jari Oksanen et al. https://cran.r-project.org/web/

packages/vegan/index.html

ComplexHeatmap(v2.4.3) Gu et al. (2016) https://jokergoo.github.io/

ComplexHeatmap-reference/book/

randomForest(v4.6-14) Leo Brieman et al. https://cran.r-project.org/web/packages/

randomForest/randomForest.pdf

resample(0.4) Tim Hesterberg https://cran.r-project.org/web/packages/

resample/resample.pdf

(Continued on next page)
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devtools(v2.3.1) Wickham, 2016 https://cran.r-project.org/web/

packages/devtools/index.html

FlowJo(v9.3) Becton, Dickinson and Company https://www.flowjo.com/
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RESOURCE AVAILABILITY

Lead contact
All information and requests for further resources should be directed to and will be fulfilled by the Lead Contact, Justin Sonnenburg,

jsonnenburg@stanford.edu

Materials availability
This study did not generate new unique reagents.

Data and code availability
Datasets and code for analysis are available at https://github.com/SonnenburgLab/fiber-fermented-study/. Raw data files for 16S

and metagnomics sequencing available at BioProject database, ID number: PRJNA743361.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recruitment and selection of participants
Participants were recruited from the local community through online advertisement in different community groups aswell as emails to

past research participants that consented to being contacted for future studies. The current study assessed 381 participants for eligi-

bility. They completed an online screening questionnaire and a clinic visit between July 2016 and January 2017. The primary inclusion

criteria included ageR 18 y and general good health. Participants were excluded if they had a history of active uncontrolled inflam-

matory bowel disease (IBD) including ulcerative colitis, Crohn’s disease, or indeterminate colitis, irritable bowel syndrome (IBS) (mod-

erate or severe), infectious gastroenteritis, colitis or gastritis, Clostridium difficile infection (recurrent) or Helicobacter pylori infection

(untreated), malabsorption (such as celiac disease), major surgery of the GI tract, with the exception of cholecystectomy and appen-

dectomy, in the past five years, or anymajor bowel resection at any time. Other exclusion criteria included aBMIR 40, diabetes, renal

disease, significant liver enzyme abnormality, pregnancy or lactation, smoking, a history of CVD, inflammatory disease, or malignant

neoplasm. Participants with high levels of dietary fiber intake (above 20 g of fiber per day) or more than 2 servings per day of fer-

mented foods were excluded. Consort flow diagram of participant recruitment shown in Figure 1A and demographics table shown

in Table S1. 36 participants (25 female sex and gender identifying, 11male sex and gender identifying) were used for full analysis with

an average age of 52 ± 11 years. All study participants provided written informed consent. The study was designed as an exploratory

approach toward discover of changes in the microbiota and the immune system in response to dietary intervention. The study was

approved annually by the Stanford University Human Subjects Committee. Trial was registered at ClinicalTrials.gov, identifier:

NCT03275662.

Specimen collection
Stool samples were collected every two weeks fromweek�2 through the end of observation at week 14. All stool samples were kept

in participants’ home freezers (�20�C) wrapped in ice packs, until they were transferred on ice to the research laboratory and stored

at �80�C.
Blood samples were collected at 7 time points:�3 weeks, start of intervention, week 4 (end of ramp-up), week 6, week 8, week 10

(3 time points during maximum intake), and week 14 (end of observation). Blood for PBMC and whole blood aliquots were collected

into heparinized tubes. Whole blood aliquots were incubated with Proteomic Stabilization Buffer (Smart tube, Fisher Scientific) for

12 minutes at room temperature and stored at �80C. PBMCs were isolated using Ficoll-Paque PLUS (Sigma-Aldrich), washed

with PBS, frozen at �80C for 24 hours then moved to LN2 for longer storage. Blood for serum was collected into an SST-tiger

top tube, spun at 1,200xg for 10 minutes, aliquoted, and stored at �80C. Blood for plasma was collected into an EDTA tube,

spun at 1,200xg for 10 minutes, aliquoted, and stored at �80C.

METHOD DETAILS

Intervention
Participants were randomized to follow a diet high in fiber or high in fermented foods. A simple randomization was done for the two

groups using a random number generator (Excel), performed by a statistician not involved in the intervention or data collection. Two
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participants requested to be placed on the high-fiber diet andwere non-randomized. Participants and dieticians could not be blinded

to randomization assignments in order to perform and counsel the dietary changes, nor was the study team blinded. They were in-

structed to ramp up the intake of foods high in fiber/fermented during the first 4 weeks of the intervention with a goal of adding at least

20 g of fiber per day to their baseline consumption in the fiber arm and 6 servings a day of fermented foods/day in the fermented food

arm, and were encouraged to consume more if they could tolerate it. They were instructed to maintain the high level of consumption

during the following 6 weeks. Detailed instructions were provided to encourage participants to include a variety of fiber sources (le-

gumes, seeds, whole grains, nuts, vegetables, and fruits) or fermented foods (fermented dairy products, fermented vegetables, fer-

mented non-alcoholic drinks). Participants were followed for an additional 4 weeks after the end of the intervention period. All

participants met with a dietitian at baseline, end of ramp up, and every 2 weeks during the high intake period. They were asked to

keep detailed food logs 3 days per week (2 weekdays and 1 weekend) every other week through the duration of the study. Food

logs were reviewed by the dietitian to assess compliance and provide recommendations to increase amounts or variety of fiber/fer-

mented foods in the diet as tolerated. Participants filled out gastrointestinal symptoms surveys (GSRS) (Svedlund et al., 1988) and

symptom changes (Winham and Hutchins, 2011) every 2 weeks, and these were discussed during the visits with the dietitian.

Dietary Data
Participants logged all their food and drink intake for 3 days (2 weekdays and 1weekend) eachweek during the ramp phase and every

other week for the rest of the study using the HealthWatch360 app. The dietitian reviewed the entries with participants to assess ac-

curacy of entries and portions. An average of the 3 days was used for each time point. Entries for time points: baseline, week 4, week

10, and week 14 were re-entered into the Nutrition Data System for Research (NDSR) 2019 database by a dietitian. NDSR appendix

10 was used to classify foods into food groups.

Fiber intake was reported as average intake in grams per day for each week of the intervention. Categories of fiber sources were

grouped into fruits, grains, legumes, nuts/seeds, vegetables, meat, dairy, and other. Fermented intake was reported as the average

number of servings per day for each week of the intervention. One serving of fermented foods were defined as the following: kom-

bucha, yogurt, kefir, buttermilk, kvass = 6 oz, kimchi, sauerkraut, other fermented veggies = 1/4 cup, vegetable brine drink = 2 oz. To

determine if fiber or fermented intake significantly changed during the course of the intervention, paired t tests were performed from

week�2 to all other time points. Broad categories of fermented foods were grouped into cottage cheese, kefir, kombucha, vegetable

brine drinks, vegetables, yogurt, other foods, and other drinks.

The following validated health surveys were used by participants: PROMIS v1.1 global health, PROMIS v1.0 - fatigue, WHO well-

being index, PROMIS applied cognition short form, Perceived Stress Scale (Cohen et al., 1983), and the International Physical Activity

Questionnaire (Craig et al., 2003).

16S amplicon sequencing
DNA was extracted from stool and fermented foods using the MoBio PowerSoil kit according to the Earth Microbiome Project’s pro-

tocol (Gilbert et al., 2014) and amplified at the V4 region of the 16S ribosomal RNA (rRNA) subunit gene and 250 nucleotides (nt) Illu-

mina sequencing reads were generated. There was an average of 20,119 reads per sample and samples with less than 1,000 reads

were filtered out (7 samples out of 338 removed). There was an average of 15,292 reads per sample recovered after filtering, denois-

ing, and removing chimeras. Fermented foods of the same brands used commonly by participants were purchased and subjected to

the 16S sequencing method. It is important to note that our findings for these foods may not directly reflect the composition of the

exact foods (e.g., due to batch variation) eaten by the participants, who purchased their own fermented food.

16S rRNA gene amplicon sequencing data from both stool samples and fermented food samples were demultiplexed using the

QIIME pipeline version 1.8 (Caporaso et al., 2010). Amplicon sequence variants (ASVs) were identified with a learned sequencing er-

ror correction model (DADA2method) (Callahan et al., 2016), using the dada2 package in R. ASVs were assigned taxonomy using the

GreenGenes database (version 13.8).

ɑ-diversity was quantified as the number of observed ASVs, Shannon diversity, or PD whole tree, in a rarefied sample using the

phyloseq package in R (version 3.4.0). Data were rarefied to 3,649 reads per sample (lowest 10% of reads, 299 samples retained

out of 331 total) also using the phyloseq package in R. Rarefied data were only used for ɑ-diversity measures.

b-diversity was calculated using the ordinate function in the phyloseq package in R (version 3.4.0) for weighted and unweighted

Unifrac. To determine if the high-fiber and high-fermented food diet arms were significantly different at baseline, the samples

were filtered to week �2, b-diversity was calculated, and the analysis of variance using distance matrices was calculated with the

adonis function (method = ‘‘euclidean’’) in the vegan package in R (version 2.5.6).

Metagenomic sequencing
DNA extraction for shotgun metagenome sequencing was done using the MoBio PowerSoil kit as described in the 16S amplicon

sequencing methods. For library preparation, the Nextera Flex kit was used with a minimum of 10ng of DNA as input and 6 or 8

PCR cycles depending on input concentration. A 12 base pair dual-indexed barcode (CZ Biohub) was added to each sample and

libraries were quantified using an Agilent Fragment Analyzer. They were further size-selected using AMPure XP beads (Beckman)

targeted at a fragment length of 450bp (350bp size insert). DNA paired-end sequencing (2x146bp) was performed on a NovaSeq

6000 using S4 flow cells (CZ Biohub). The average target depth for each sample was 23.3 million paired-end reads.
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Data quality analysis was performed by demultiplexing raw sequencing reads and concatenating data for samples that required

multiple sequencing runs for target depth before further analysis. BBtools suite (https://sourceforge.net/projects/bbmap/)) was used

to process raw reads and mapped against the human genome (hg19) after trimming, with masks over regions broadly conserved in

eukaryotes (http://seqanswers.com/forums/showthread.php?t=42552). Exact duplicate reads (subs = 0) were marked using clum-

pify and adapters and low-quality bases were trimmed using bbduk (trimq = 16, minlen = 55). Finally, reads were processed for suf-

ficient quality using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Carbohydrate active enzymes (CAZymes) were annotated using dbCAN (v2.0.11) (Huang et al., 2018; Yin et al., 2012) on genes

called from FragGeneScan (Rho et al., 2010). From merged reads, unmerged reads with the requirement that the CAZymes were

identified with both diamond (Buchfink et al., 2015) and hotpep (Busk et al., 2017). Final read counts were normalized by calculating

the reads per million for each CAZyme subfamily in each of the samples (CAZyme count/sum all sample counts/1e6). CAZyme anal-

ysis was restricted to GHs and PLs. To determine the CAZyme subfamilies that significantly changed in relative abundance from

baseline (week �2, or week 0 if missing) to end of maintenance phase (week 10 or week 8 if missing), a using the siggenes package

in R (SAM two-class paired, FDR % 0.05, q-val % 0.1).

Stool proteomics
Methods for stool preparation, mass spectrometry protocol, and protein searches are described in Gonzalez et al. (2020). Briefly, a

measured quantity between 100-200 mg of stool per sample was loaded into a 96-well plate and lysed with ceramic beads, centri-

fuged, supernatant proteins alkylated, washed, digested and eluted using an S-trap plate. Protein concentrations were normalized

and longitudinal samples for each individual labeled with TMT-11 multiplexing kit. Peptide samples were injected onto reversed-

phase chromatography using a Dionex Ultimate 3000 HPLC and run on a Thermo Fusion Lumos mass spectrometer that collected

MS data in positive ion mode within a 400-1500 m/z range. The resulting mass spectra raw data files were searched using Proteome

Discoverer 2.2. using the built-in SEQUEST search algorithm with built-in TMT batch correction. Three FASTA protein sequence da-

tabases were employed: Uniprot Swiss-ProtHomo sapiens (taxon ID 9606, FASTA file downloaded January 2017), the HumanMicro-

biome Project (FASTA file downloaded from https://www.hmpdacc.org/hmp/HMRGD/ on January 2017), and an in-house curated

database containing common preparatory contaminants. Target-decoy searching at both the peptide and protein level were em-

ployed with a strict FDR cutoff of 0.01 using the Percolator algorithm built into Proteome Discoverer 2.2. Themass spectrometry pro-

teomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier

PXD021786.

Protein abundance was recorded from the average of two runs, log2(x+1) transformed, and normalized as a percentage of

summed reporter intensity for all quantified proteins in a given sample (single protein intensity/total sample intensity). Proteins

were denoted as either host or microbial derived based on high confidence matches to the Human Microbiome Project protein

sequence database. Reported microbial proteins and protein abundances represent the summation of protein database entries

with identical descriptions, decreasing microbial protein variables from 5,372 unique proteins to 4,315 unique descriptions. All

host proteins had unique descriptions. As an unsupervised method to decrease the number of parameters for multiple hypothesis

testing, the host proteins were filtered to include the top 75% (230 proteins) and microbe proteins were filtered to include the top

50% (2,157 proteins) proteins with the highest variance across participants (participant-specific difference from end of intervention

to baseline). All proteomic analyses were completed using the described filtered dataset.

Stool short-chain fatty acids
For sample preparation, a measured quantity of �20 mg stool per sample was loaded into 1.5 mL Eppendorf tubes and sent to Me-

tabolon for absolute quantitation of short chain fatty acids. All samples were kept frozen and shipped on dry ice. Paired Welsh t tests

were used to determine if levels of short chain fatty acids significantly changed from baseline to end of intervention. For visualization

purposes, outliers are not shown in plots. All points were used for statistical analysis.

Stool Carbohydrates
Methods for measurement of monosaccharides present in stool samples using GC-MS are described in DeJongh et al. (1969). Briefly,

stool samples were homogenized in 10% aqueous ethanol solution and dried using a vacuum concentrator. A known dry weight (be-

tween0.5-0.8mg) of samplewas transferred to a glass hydrolyzing tubebefore being suspended via sonication, heated, and lyophilized.

Sampleswere thenmethanolyzed using 1MMeOH-HCl and re-N-acetylated usingMeOH:Pyridine: Acetic anhydride (3:1:1 v/v). Finally,

samples were converted to TMS-ehteress using Tri-Sil reagent (Thermo Scientific), dried via dry nitrogen flush, and extractedwith hex-

ane. TMS derivatives of themethyl glycosideswere analyzed usingGC-MS and profiling of themonosaccharides was completed using

Resteck 5MS fused silica capillary column at an oven temperature gradient. 1uL of samplewas injected onto theGCcolumn using split-

lessmode. A standardmixture of different monosaccharideswas also run to compare and quantify absolute value ofmonosaccharides

present in samples. A linear mixed effects model was used to vary percentage of carbohydrates in stool with fiber intake.

CyTOF
Whole blood samples were thawed and red blood cells were lysed using Thaw Lyse buffer (Smart Tube, inc) for 10 minutes twice at

room temperature, thenwashed twicewith cell stainingmedia (CSM: PBSwith 0.5%BSAand 0.02%Na azide). 1x106 cells fromeach
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sample were barcoded as previously described (Behbehani et al., 2014). Briefly, cells were slightly permeabilized using PBS with

0.02% saponin, then stained with unique combinations of functionalized, stable palladium isotopes for 15 minutes at room temper-

ature. Samples were washed with CSM and pooled into a single tube for staining. Cells were blocked with human TruStain FcX block

(Biolegend) then stained with an extracellular antibody cocktail. Antibody cocktails were rehydrated with CSM after lyophilization into

LyoSpheres (BioLyph) with excipient B144 as 4x cocktails as previously described (Fragiadakis et al., 2019). Antibody panels are

listed in Table S6. Samples were then permeabilized using methanol for 10 minutes at 4�C and stained with an intracellular antibody

cocktail. Cells were stained with an iridium intercalator overnight prior to CyTOF acquisition. Samples were washed twice with water,

resuspended in normalization beads (Fluidigm), and filtered through a cell strainer. Samples were run on a Helios CyTOF.

Samples were normalized and debarcoded using the premessa package in R. Cell populations were gated using Cell Engine

(http://immuneatlas.org, gating strategy, Figure S3). Cell frequencies were calculated as the fraction of CD45+ cells, with the excep-

tion of neutrophils, which were quantified as a percentage of singlet cells. Endogenous signaling was taken as themedian level of the

transformed level of a signaling protein in a specific cell population (transformation = arcsinh(value/5)). Samples were excluded if the

number of singlets was less than 10,000 cells. If data were available for both baseline samples, the first baseline was used; otherwise

the second baseline was used. For heatmaps, missing data were imputed using the average value of a feature across all participants.

For significance analysis, participants with missing data were excluded. For significance analysis of signaling proteins, features were

restricted to those in four major cell types (CD4+ T cells, CD8+ T cells, B cells, classical monocytes) and analysis was performed

using the siggenes package in R (SAM two-class paired, FDR% 0.05, q-value% 0.1). Significance of cell frequencies was assessed

using a Wilcoxon paired test.

Serum cytokines
Cytokine data were generated from serum samples submitted to Olink Proteomics for analysis using their provided inflammation

panel assay of 92 analytes (Olink INFLAMMATION, Table S6). Out of 92 proteins, 67 were detected in > 75% of samples and

used in analysis. Data are presented as normalized protein expression values (NPX, Olink Proteomics arbitrary unit on log2 scale).

Significance was assessed using the siggenes package in R (SAM two-class paired, FDR % 0.05, q-value % 0.1).

Flow cytometry
This assay was performed by the Human Immune Monitoring Center at Stanford University. PBMC were thawed in warm media,

washed twice and resuspended at 0.5x106 viable cells/mL. 200 uL of cells were plated per well in 96-well deep-well plates. After

resting for 1 hour at 37�C, cells were stimulated by adding 50 ul of cytokine (IFNa, IFNg, IL-6, IL-10, or IL-2) or LPS and incubated

at 37�C for 15 minutes. The PBMCs were then fixed with paraformaldehyde, permeabilized with methanol, and kept at �80�C over-

night. Each well was bar-coded using a combination of Pacific Orange and Alexa-750 dyes (Invitrogen, Carlsbad, CA) and pooled in

tubes. The cells were washed with FACS buffer (PBS supplemented with 2% FBS and 0.1% sodium azide), and stained with the

following antibodies (all from BD Biosciences, San Jose, CA): CD3 Pacific Blue, CD4 PerCP-Cy5.5, CD20 PerCp-Cy5.5, CD33

PE-Cy7, CD45RA Qdot 605; cytokine samples were additionally stained with pSTAT-1 FITC, pSTAT-3 APC, pSTAT-5 PE, whereas

the LPS sample was stained with pERK APC, pP38 FITC, and pPLCg2 PE (Table S6). The samples were then washed and resus-

pended in FACS buffer. 100,000 cells per stimulation condition were collected using DIVA 6.0 software on an LSRII flow cytometer

(BD Biosciences). Gating was performed using FlowJo v9.3 by gating on live cells based on forward versus side scatter profiles, then

on singlets using forward scatter area versus height, followed by cell subset-specific gating.

Signaling markers were quantified as the 90th percentile value. To quantify signaling capacity, we calculated fold change in phos-

pho-proteins between cytokine stimulated and unstimulated. For analysis we restricted our feature set to features with an average

fold change greater than two. Significance was assessed using the siggenes package in R (SAM two-class paired, FDR % 0.05, q-

value % 0.1).

Untargeted serum metabolomics
Metabolites from high-fermented food participant serum samples were extracted in LC-MS grade methanol (4:1 v/v). Protein precip-

itation in serum samples was conducted by incubating the samples for 5 minutes at room temperature and centrifugation at 5,000xg

for 10 minutes. Sample supernatants were then transferred, evaporated, and reconstituted in an internal standard mix (50% Meth-

anol). Metabolite samples were analyzed on a LC-MS qTOF instrument using reverse phase C18 positive, C18 negative, and HILIC

positive methods as described (Wikoff et al., 2009). Compound annotation was carried out using the MSDIAL software (Tsugawa

et al., 2015) and an authentic standard reference library. To quantify metabolite levels, area under the curve for each annotated

metabolite was normalized using the sum of internal standards in each sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Location of Statistical Details in the Text
Results of each experiment can be found in the results and figure legends. Significant values of statistical tests are also indicated by

an asterisk in the figures. Number of participants in each data type are found in Table S2.
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Statistical Analysis of Primary Outcome
The primary outcome as listed onClinicalTrials.govwas the change in Cytokine Response Scorewithin each arm frombaseline (week

�2) to end of maintenance phase (week 10). CRS was calculated using the method described in (Shen-Orr et al., 2016). Significant

changes were evaluated using a paired t test (Table S4). Only participants that were randomized were included in calculation of pri-

mary outcome (two participants in the high-fiber diet excluded). A Statistical Analysis Plan was not pre-published, however multiple

hypothesis testing correction was applied as described throughout.

Centering and Scaling Data
In analyses comparing different data types to each other, parameters were centered and scaled (across columns) to eliminate exper-

imental bias. All methods describing data as centered and scaled were done using the scale function in base R (scale function, cen-

ter = TRUE, scale = TRUE). Centered data were calculated by subtracting the column means from each value. Scaled data were

calculated by dividing the centered columns by their standard deviations.

Recursive feature random forest
To determine which data typewasmost accurate in differentiating between high-fiber and high-fermented food diet arms, a recursive

feature random forest (caret, rfeControl, number = 100, leave one out cross validation) was used. Parameters for each data type were

the participant-specific differences from end of intervention (week 10) to baseline (week �2 for stool, week �3 for blood). If a partic-

ipant did not have both the baseline and end of intervention time point for a given experimental platform they were removed from

analysis. All parameters were centered and scaled. To decrease redundant parameters of large feature sets, unsupervised parameter

filtration was used. 16S data were filtered to only ASVs present in at least 25% of samples and rank-normalized within each sample

according to the methods described by Callahan et al. (2017). Host proteins were filtered to top 75% (230 proteins total) andmicrobe

proteins were filtered to top 50% proteins (2,157 proteins total) with the highest variance across participants. CAZyme subfamilies

were summed at the family level across samples. The recursive feature random forest models returned the minimum feature set

needed for highest accuracy (Table S5).

Multiple Testing using Significance Analysis of Microarrays (SAM)
The identification of parameters differentially expressed between diet groups (unpaired) or within the same participant at different

time points (paired) and estimation of the False Discovery Rate (FDR) was calculated using the siggenes package in R. Significance

was described as FDR % 0.05 and a q-value % 0.10.

Linear Mixed Effects Modeling
Linear mixed-effects models were used to assess the linear correlation between two variables when the same participant contributed

multiple samples to the model (i.e., participant at multiple time points). Because samples from the same participant are not indepen-

dent from one another and introduces autocorrelation, we used the participant term as a random variable in the lme function using the

nLME package in R. Terms for gender, race, and BMI were included in the model as covariates in the analysis of diversity over time.

Total fiber intake (grams) was correlated with the percentage of carbohydrates in stool using a linear mixed-effects model using the

lme function and participants as the random variable.

Association between rank-order ASV count versus time point (weeks) and alpha diversity (number observed ASVs) versus fer-

mented food intakewere assessed using the lme function and participants as the random variable. P values for all ASVs in association

with time were adjusted for multiple hypothesis testing using a Benjamini-Hochberg correction.

To determine if the number of observed ASVs over time varied between high-fiber diet inflammation groups, a pairwise LMEmodel

was used. Number of observed ASVs was the outcome variable with both time (in weeks) and inflammation group (binary variable) as

the covariates. The inflammation group only compared two groups at a time, so three models in total were made to determine sig-

nificance between fiber inflammatory groups: high-inflammation versus low-inflammation i, high-inflammation versus low-inflamma-

tion ii, and low-inflammation i versus low-inflammation ii. For the model comparing high-inflammation and low-inflammation i, the

inflammation group factor was significant (p value = 7.2e-4), but the time variable was not (p value = 0.69). The other two models

did not have significant p values.

To determine if fermented food intake varied significantly with the number of observed ASVs, the lme function and participants as

the random variable, a model was made for total fermented food intake and each fermented food group separately, p values were

adjusted using Benjamini-Hochberg correction.

Modeling ASV Changes in Relative Abundance and Presence/Absence Over Time using a Zero-inflated Beta Random
Effect Model (ZIBR)
To identify differences in abundance and/or presence of taxa between inflammation clusters over time in the high-fiber diet arm, the

zero-inflated beta regression model was fit using the ZIBR package in R. A filtered dataset was curated as described in Chen and Li

(2016). ASVs were preprocessed using tip_glom (phyloseq package in R, h = 0.1), removed if they were non-characterized in Green-

Genes, and filtered to only ASVs present in at least 25% of samples. Since ZIBR cannot handle missing data, missing samples were
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filled with the average ASV abundance for each group at each time point. Taxa with significant baseline coefficients were filtered out

to focus on the significant differences induced by the dietary intervention (Table S7).

New ASVs in Participant Samples also Detected in Fermented Foods
New ASVs in participant stool samples were calculated by aggregating and summing new ASVs for each participant and time point.

New ASVs included those not present at either baseline time point (weeks �2, 0), but detected at any other time point during the

intervention (weeks 2-9). Fermented food ASVs (Figure S5) with less than 250 counts were filtered out. Overlap of the new ASVs

gained during intervention and also found in the fermented food were summed across all participants at each time point.

Pearson Correlation Between Change in Serum Metabolites and Cytokines
Serum metabolomics was collected for the high-fermented food diet arm. Peak area for each metabolite was normalized using the

summation of internal standards in each sample. Difference between week 10 and�2 was calculated for each serummetabolite and

inflammatory cytokine. Pearson correlation was calculated between each metabolite-cytokine pair and p values were corrected us-

ing Benjamini-Hochberg hypothesis correction. Significant correlations (p value adjusted % 0.05) shown in Figure S6B.

Spearman Correlation Between Data Types
The spearman correlation between all parameters was calculated. Data input encompassed participant-specific differences from

both groups, centered and scaled. If a participant did not have both the baseline and end of intervention time point for a given exper-

imental platform they were removed from analysis. Parameters were filtered using the same methods described for the random for-

est, grouped into their respective experimental platforms, and designated to host or immune derived. Correlations were filtered to

only host-microbe comparisons before Benjamini-Hochberg hypothesis correction. Correlations between host proteins andmicrobe

proteins are not shown here as they were derived from the same sample and experimental platform and had inflated internal bias

compared to the other cross-omic comparisons. Host protein annotation for analysis with their association to CAZymes (Figure 7B)

was assigned using the Ingenuity Pathway Analysis Core Analysis, Diseases and Functions Analysis. Full annotation of proteins in

each bin can be found in Table S8.

ADDITIONAL RESOURCES

Clinical trial registry #NCT03275662: https://clinicaltrials.gov/ct2/show/NCT03275662
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Supplemental figures

Figure S1. Alpha and beta diversity measures for high-fiber and high-fermented-diet arms, related to Figures 1, 3, and 5

(A) Average baseline (Weeks �2 and 0) alpha diversity measures (observed ASVs, PD whole tree, and Shannon) in the high-fermented food and high-fiber

diet arms.

(B) Weighted Unifrac beta diversity at baseline (Week �2) for the high-fermented food and high-fiber diet arms.

(C) Shannon alpha diversity in high-fiber diet arm.

(D) Phylogenetic diversity (PD) whole tree alpha diversity in high-fiber food diet arm.

(E) PD whole tree alpha diversity in high-fermented food diet arm. * indicates significant p value relative to week�2 (p value% 0.05). Linear regression significant

using a linear mixed effects model (p value = 1.3e-2).
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Figure S2. Individual participant high-fiber and high-fermented-food-diet arm group intake, related to Figure 1

(A) Participant-specific fiber intake by category for high-fiber diet arm.

(B) Participant-specific intake by category for high-fermented foods diet arm.
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Figure S3. CyTOF gating strategy, related to Figures 4 and 6
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Figure S4. Changes in endogenous signaling in the high-fiber-diet arm inflammation groups, related to Figure 4

Endogenous signaling levels measured by CyTOF and identified as significantly changed (FDR % 0.05, q-value % 0.1, SAM test using siggenes package) from

baseline (week�3) to end of maintenance (week 10) indicated by the shaded boxes next to the boxplots (red = significantly changed in high-inflammation group,

blue = significantly changed in low-inflammation ii group).
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Figure S5. 16S ASV analysis of fermented foods, related to Figure 5

ASVs with fewer than 250 counts were filtered out and counts binning to the same genus were summed. If genus was unassigned, ASVs were summed based on

the same order and family.
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Figure S6. Changes observed in high-fermented-food-diet arm, related to Figures 5 and 6

(A) CAZymes identified from metagenomic sequencing as significantly changing in relative abundance from baseline to end of maintenance phase (FDF% 0.05,

q-value % 0.1, SAM test using siggenes package). CAZymes were annotated using dbCan and assigned to functional categories.

(B) Serum metabolite difference correlated to inflammatory cytokine differences using Pearson correlation (adjusted p value % 0.05). Increasing circle size in-

dicates decreasing adjusted p value. Correlations between metabolite and cytokine that were positive shown as a red circle and negative shown as a blue circle.
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